Home
Class 12
MATHS
If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y...

If ` tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and " sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = pi/6 " , then " ( 5 sin^(-1) x)/( sin^(-1) y) ` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two equations given and find the value of \( \frac{5 \sin^{-1} x}{\sin^{-1} y} \). ### Step 1: Analyze the first equation The first equation is: \[ \tan^{-1} x + \tan^{-1} \left( \frac{\sqrt{1 - y^2}}{y} \right) = \frac{\pi}{3} \] Let \( x = \tan a \) and \( y = \cos b \). Then we can rewrite the equation as: \[ \tan^{-1}(\tan a) + \tan^{-1}(\tan b) = \frac{\pi}{3} \] This simplifies to: \[ a + b = \frac{\pi}{3} \tag{1} \] ### Step 2: Analyze the second equation The second equation is: \[ \sin^{-1} y - \cos^{-1} \left( \frac{x}{\sqrt{1 + x^2}} \right) = \frac{\pi}{6} \] Using \( y = \cos b \) and \( x = \tan a \), we can rewrite this as: \[ \sin^{-1}(\cos b) - \cos^{-1}(\sin a) = \frac{\pi}{6} \] Using the identity \( \sin^{-1}(\cos b) = \frac{\pi}{2} - b \), the equation becomes: \[ \frac{\pi}{2} - b - \left( \frac{\pi}{2} - a \right) = \frac{\pi}{6} \] This simplifies to: \[ a - b = \frac{\pi}{6} \tag{2} \] ### Step 3: Solve the equations Now we have two equations: 1. \( a + b = \frac{\pi}{3} \) 2. \( a - b = \frac{\pi}{6} \) Adding these two equations: \[ (a + b) + (a - b) = \frac{\pi}{3} + \frac{\pi}{6} \] \[ 2a = \frac{2\pi}{6} + \frac{\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] Thus, we find: \[ a = \frac{\pi}{4} \] Now substituting \( a \) back into equation (1): \[ \frac{\pi}{4} + b = \frac{\pi}{3} \] \[ b = \frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi - 3\pi}{12} = \frac{\pi}{12} \] ### Step 4: Find \( x \) and \( y \) Now we can find \( x \) and \( y \): \[ x = \tan a = \tan\left(\frac{\pi}{4}\right) = 1 \] \[ y = \cos b = \cos\left(\frac{\pi}{12}\right) \] ### Step 5: Calculate \( \frac{5 \sin^{-1} x}{\sin^{-1} y} \) Now we need to find: \[ \frac{5 \sin^{-1} x}{\sin^{-1} y} \] Since \( x = 1 \): \[ \sin^{-1} 1 = \frac{\pi}{2} \] For \( y = \cos\left(\frac{\pi}{12}\right) \): \[ \sin^{-1} y = \sin^{-1}(\cos(\frac{\pi}{12})) = \frac{\pi}{2} - \frac{\pi}{12} = \frac{6\pi - \pi}{12} = \frac{5\pi}{12} \] Thus: \[ \frac{5 \sin^{-1} x}{\sin^{-1} y} = \frac{5 \cdot \frac{\pi}{2}}{\frac{5\pi}{12}} = \frac{5 \cdot \frac{\pi}{2} \cdot 12}{5\pi} = \frac{12}{2} = 6 \] ### Final Answer The value of \( \frac{5 \sin^{-1} x}{\sin^{-1} y} \) is \( 6 \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(-2) + 1/y^(-2) equals .

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is

sin^(-1)(x^2/4+y^2/9)+cos^(-1)(x/(2sqrt2)+y/(3sqrt2)-2)

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

Which of the following pairs of function/functions has same graph? y=tan(cos^(-1)x); y=(sqrt(1-x^2))/x y=t a n(cot^(-1)x);y=1/x y="sin"(tan^(-1)x); y=x/(sqrt(1+x^2)) y="cos"(tan^(-1)x); y=sin(cot^(-1)x)

y=tan^(-1)(cos x/(1+sin x))