Home
Class 12
MATHS
If A = 1/1 cot ^(-1) (1/1) + 1/2 cot^(-...

If ` A = 1/1 cot ^(-1) (1/1) + 1/2 cot^(-1) (1/2) + 1/3 cot ^(-1) ( 1/3) " and " B = 1 cot^(-1) ( 1) + 2 cot^(-1) (2) + 3 cot^(-1) (3) " then " |B - A| " is equal to " (api)/b + c/d cot ^(-1) (3) `
where `a,b,c,d in N` are in their lowest form , find ` ( b -a - c - d) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions for \( A \) and \( B \) and then find \( |B - A| \). ### Step 1: Calculate \( A \) Given: \[ A = \frac{1}{1} \cot^{-1}(1) + \frac{1}{2} \cot^{-1}\left(\frac{1}{2}\right) + \frac{1}{3} \cot^{-1}\left(\frac{1}{3}\right) \] Calculating each term: - \( \cot^{-1}(1) = \frac{\pi}{4} \) - \( \cot^{-1}\left(\frac{1}{2}\right) = \tan^{-1}(2) \) (since \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \)) - \( \cot^{-1}\left(\frac{1}{3}\right) = \tan^{-1}(3) \) Thus, \[ A = 1 \cdot \frac{\pi}{4} + \frac{1}{2} \tan^{-1}(2) + \frac{1}{3} \tan^{-1}(3) \] ### Step 2: Simplify \( A \) Now, substituting the values: \[ A = \frac{\pi}{4} + \frac{1}{2} \tan^{-1}(2) + \frac{1}{3} \tan^{-1}(3) \] ### Step 3: Calculate \( B \) Given: \[ B = 1 \cdot \cot^{-1}(1) + 2 \cdot \cot^{-1}(2) + 3 \cdot \cot^{-1}(3) \] Calculating each term: - \( \cot^{-1}(1) = \frac{\pi}{4} \) - \( \cot^{-1}(2) = \tan^{-1}\left(\frac{1}{2}\right) \) - \( \cot^{-1}(3) = \tan^{-1}\left(\frac{1}{3}\right) \) Thus, \[ B = \frac{\pi}{4} + 2 \tan^{-1}\left(\frac{1}{2}\right) + 3 \tan^{-1}\left(\frac{1}{3}\right) \] ### Step 4: Simplify \( B \) Now substituting the values: \[ B = \frac{\pi}{4} + 2 \tan^{-1}\left(\frac{1}{2}\right) + 3 \tan^{-1}\left(\frac{1}{3}\right) \] ### Step 5: Find \( |B - A| \) Now we compute \( |B - A| \): \[ |B - A| = \left| \left( \frac{\pi}{4} + 2 \tan^{-1}\left(\frac{1}{2}\right) + 3 \tan^{-1}\left(\frac{1}{3}\right) \right) - \left( \frac{\pi}{4} + \frac{1}{2} \tan^{-1}(2) + \frac{1}{3} \tan^{-1}(3) \right) \right| \] This simplifies to: \[ |B - A| = \left| 2 \tan^{-1}\left(\frac{1}{2}\right) + 3 \tan^{-1}\left(\frac{1}{3}\right) - \frac{1}{2} \tan^{-1}(2) - \frac{1}{3} \tan^{-1}(3) \right| \] ### Step 6: Use properties of inverse tangent Using the property \( \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \) for appropriate values, we can combine terms. After simplification, we find: \[ |B - A| = \frac{5\pi}{24} + \frac{5}{6} \cot^{-1}(3) \] ### Step 7: Compare with the given form The problem states: \[ |B - A| = \frac{a\pi}{b} + \frac{c}{d} \cot^{-1}(3) \] From our result: - \( a = 5 \) - \( b = 24 \) - \( c = 5 \) - \( d = 6 \) ### Step 8: Calculate \( b - a - c - d \) Now we calculate: \[ b - a - c - d = 24 - 5 - 5 - 6 = 8 \] ### Final Answer Thus, the final answer is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

Prove: cot^(-1)(1/2)-1/2cot^(-1)(4/3)=pi/4

Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

2cot^(- 1)5+cot^(- 1)7+2cot^(- 1)8=pi/4

Find the set of values of cot^(-1)(1) and cot^(-1)(-1)

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x