Home
Class 12
MATHS
Match the principal values of cos^(-1) ...

Match the principal values of ` cos^(-1) ( 8 x^(4) - 8 x^(2) + 1)` given in column I with the corresponding intervals of x given in column II . For which it holds .
`{:(,"Column I",,"Column II"),(A,4 cos^(-1) x,p.,0 le x le 1/sqrt2),(B,4 cos^(-1)x - 2 pi,q.,1/sqrt2 le x le 1),(C,2pi - 4 cos^(-1)x,r.,-1le x le - 1/sqrt2),(D,4pi - 4 cos^(-1) x,s.,-1/sqrt2 le x le 0):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of matching the principal values of \( \cos^{-1}(8x^4 - 8x^2 + 1) \) with the corresponding intervals of \( x \), we will analyze each option step by step. ### Step 1: Analyze the expression \( 8x^4 - 8x^2 + 1 \) First, we rewrite the expression: \[ 8x^4 - 8x^2 + 1 = 8(x^4 - x^2) + 1 \] Let \( y = x^2 \). Then, we have: \[ 8(y^2 - y) + 1 = 8y^2 - 8y + 1 \] This is a quadratic in \( y \). The roots of the quadratic \( 8y^2 - 8y + 1 = 0 \) can be found using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{8 \pm \sqrt{(-8)^2 - 4 \cdot 8 \cdot 1}}{2 \cdot 8} = \frac{8 \pm \sqrt{64 - 32}}{16} = \frac{8 \pm \sqrt{32}}{16} = \frac{8 \pm 4\sqrt{2}}{16} = \frac{2 \pm \sqrt{2}}{4} \] Thus, the roots are: \[ y_1 = \frac{2 + \sqrt{2}}{4}, \quad y_2 = \frac{2 - \sqrt{2}}{4} \] ### Step 2: Determine the range of \( 8x^4 - 8x^2 + 1 \) The quadratic opens upwards (since the coefficient of \( y^2 \) is positive), and we can find the vertex to determine the maximum value. The vertex \( y \) is given by: \[ y = -\frac{b}{2a} = \frac{8}{2 \cdot 8} = \frac{1}{2} \] Calculating the value at the vertex: \[ 8\left(\frac{1}{2}\right)^4 - 8\left(\frac{1}{2}\right)^2 + 1 = 8 \cdot \frac{1}{16} - 8 \cdot \frac{1}{4} + 1 = \frac{1}{2} - 2 + 1 = -\frac{1}{2} \] Thus, the minimum value of \( 8x^4 - 8x^2 + 1 \) is \( -\frac{1}{2} \). ### Step 3: Finding intervals for \( \cos^{-1} \) Since \( \cos^{-1}(x) \) is defined for \( x \in [-1, 1] \), we need to ensure that: \[ -\frac{1}{2} \leq 8x^4 - 8x^2 + 1 \leq 1 \] 1. **For \( 8x^4 - 8x^2 + 1 \leq 1 \)**: \[ 8x^4 - 8x^2 \leq 0 \implies 8x^2(x^2 - 1) \leq 0 \] This gives \( x^2 \in [0, 1] \) or \( x \in [-1, 1] \). 2. **For \( 8x^4 - 8x^2 + 1 \geq -\frac{1}{2} \)**: \[ 8x^4 - 8x^2 + \frac{3}{2} \geq 0 \] Solving this quadratic inequality will give us the intervals for \( x \). ### Step 4: Match the values to the intervals Now we will analyze each option in Column I: - **(A)** \( 4 \cos^{-1} x \): - \( 0 \leq 4 \cos^{-1} x \leq \pi \) leads to \( 0 \leq \cos^{-1} x \leq \frac{\pi}{4} \) which corresponds to \( x \in [\frac{1}{\sqrt{2}}, 1] \) (matches with q). - **(B)** \( 4 \cos^{-1} x - 2\pi \): - Rearranging gives \( 0 \leq 4 \cos^{-1} x \leq 3\pi \) which leads to \( x \in [-\frac{1}{\sqrt{2}}, 0] \) (matches with s). - **(C)** \( 2\pi - 4 \cos^{-1} x \): - Rearranging gives \( 0 \leq 2\pi - 4 \cos^{-1} x \leq \pi \) leading to \( x \in [0, \frac{1}{\sqrt{2}}] \) (matches with p). - **(D)** \( 4\pi - 4 \cos^{-1} x \): - Rearranging gives \( 0 \leq 4\pi - 4 \cos^{-1} x \leq \pi \) leading to \( x \in [-1, -\frac{1}{\sqrt{2}}] \) (matches with r). ### Final Matching - A → q - B → s - C → p - D → r
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

if -1/2 le x le 1/2 then cos^(-1)(4x^(3)-3x) equals

If 1/2 le x le 1 then cos^(-1)(4x^(3)-3x) equals

if -1 le x le -1/2 then cos^(-1)(4x^(3)-3x) equals

If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

Solve : Cos x le - (1)/(2).

If 0 le x le 2pi , then 2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2)

If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals