Home
Class 12
MATHS
If A = 2 tan^(-1) (2 sqrt2 -1) and B = 3...

If `A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5))`, then which is greater ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( A \) and \( B \) separately and then compare them. ### Step 1: Evaluate \( A = 2 \tan^{-1}(2\sqrt{2} - 1) \) 1. Substitute the value of \( \sqrt{2} \) (approximately 1.414): \[ A = 2 \tan^{-1}(2 \times 1.414 - 1) = 2 \tan^{-1}(2.828 - 1) = 2 \tan^{-1}(1.828) \] 2. We know that \( 1.828 \) is greater than \( \sqrt{3} \) (approximately 1.732). Hence, we can say: \[ \tan^{-1}(1.828) > \tan^{-1}(\sqrt{3}) \] 3. Since \( \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \), we have: \[ \tan^{-1}(1.828) > \frac{\pi}{3} \] 4. Therefore: \[ A = 2 \tan^{-1}(1.828) > 2 \times \frac{\pi}{3} = \frac{2\pi}{3} \] ### Step 2: Evaluate \( B = 3 \sin^{-1}\left(\frac{1}{3}\right) + \sin^{-1}\left(\frac{3}{5}\right) \) 1. First, evaluate \( 3 \sin^{-1}\left(\frac{1}{3}\right) \): - Using the identity \( 3 \sin^{-1}(x) = \sin^{-1}(3x - 4x^3) \): \[ 3 \sin^{-1}\left(\frac{1}{3}\right) = \sin^{-1}\left(3 \cdot \frac{1}{3} - 4 \cdot \left(\frac{1}{3}\right)^3\right) = \sin^{-1}\left(1 - \frac{4}{27}\right) = \sin^{-1}\left(\frac{23}{27}\right) \] 2. Now, add \( \sin^{-1}\left(\frac{3}{5}\right) \): \[ B = \sin^{-1}\left(\frac{23}{27}\right) + \sin^{-1}\left(\frac{3}{5}\right) \] 3. Since both \( \sin^{-1}\left(\frac{23}{27}\right) \) and \( \sin^{-1}\left(\frac{3}{5}\right) \) are positive angles, we can estimate their values: - \( \sin^{-1}\left(\frac{23}{27}\right) \) is approximately \( 0.851 \) radians. - \( \sin^{-1}\left(\frac{3}{5}\right) \) is approximately \( 0.6435 \) radians. 4. Thus: \[ B \approx 0.851 + 0.6435 = 1.4945 \text{ radians} \] ### Step 3: Compare \( A \) and \( B \) 1. We found that: \[ A > \frac{2\pi}{3} \approx 2.094 \text{ radians} \] and \[ B \approx 1.4945 \text{ radians} \] 2. Therefore, we conclude that: \[ A > B \] ### Final Answer: \( A \) is greater than \( B \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta = 4 sin ^(-1) ((7sqrt2)/10) - 4 tan^(-1) (3/4) , then which of the following does not hold (s) good ?

The greater of the two angles A=2tan^(-1)(2sqrt(2)-1) and B=3sin^(-1)(1/3)+sin^(-1)(3/5)i s ____.

If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3) then

If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)) , then

sin^(-1){cos(sin^(-1)(sqrt(3)/2))}

If x_1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x_2=sin^(-1)(3/5)+sin^(-1)((2sqrt2)/3) , then

If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(sqrt2-1); beta = 3sin^(-1)(1/sqrt2)+sin^(-1)(-1/2) and gamma = cos^(-1)(1/3), find the relation between alpha ,beta and gamma

If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(sqrt2-1); beta = 3sin^(-1)(1/sqrt2)+sin^(-1)(-1/2) and gamma = cos^(-1)(1/3), then