Home
Class 12
MATHS
If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]...

If `[sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1`, where `[*]` denotes the greatest integer function, then `x in`

A

`[tan sin cos 1,tan sin cos sin 1]`

B

`(tan sin cos 1,tan sin cos sin1)`

C

`[-1,1]`

D

`[sin cos tan 1,sin cos sin tan 1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([ \sin^{-1}(\cos^{-1}(\sin^{-1}(\tan^{-1} x))) ] = 1\), where \([ \cdot ]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Understanding the Greatest Integer Function The greatest integer function \([a]\) gives the largest integer less than or equal to \(a\). Therefore, the equation \([ \sin^{-1}(\cos^{-1}(\sin^{-1}(\tan^{-1} x))) ] = 1\) implies: \[ 1 \leq \sin^{-1}(\cos^{-1}(\sin^{-1}(\tan^{-1} x))) < 2 \] ### Step 2: Analyzing the Range of \(\sin^{-1}\) The range of \(\sin^{-1}(y)\) is \([- \frac{\pi}{2}, \frac{\pi}{2}]\) or approximately \([-1.57, 1.57]\). Therefore, the maximum value of \(\sin^{-1}(\cos^{-1}(\sin^{-1}(\tan^{-1} x)))\) can be at most \(\frac{\pi}{2}\), which is approximately \(1.57\). Since \(1 < 2\) holds true, we can focus on the lower bound: \[ \sin^{-1}(\cos^{-1}(\sin^{-1}(\tan^{-1} x))) \geq 1 \] ### Step 3: Solving the Inequality To solve the inequality \(\sin^{-1}(\cos^{-1}(\sin^{-1}(\tan^{-1} x))) \geq 1\), we take the sine of both sides: \[ \cos^{-1}(\sin^{-1}(\tan^{-1} x)) \geq \sin(1) \] Since \(\sin(1) \approx 0.8415\), we can rewrite this as: \[ \cos^{-1}(\sin^{-1}(\tan^{-1} x)) \geq 0.8415 \] ### Step 4: Analyzing \(\cos^{-1}\) The function \(\cos^{-1}(y)\) is decreasing, so we can set: \[ \sin^{-1}(\tan^{-1} x) \leq \cos(0.8415) \] Calculating \(\cos(0.8415) \approx 0.5403\), we have: \[ \sin^{-1}(\tan^{-1} x) \leq 0.5403 \] ### Step 5: Solving for \(\tan^{-1} x\) Taking the sine of both sides gives: \[ \tan^{-1} x \leq \sin(0.5403) \approx 0.5150 \] Thus, we have: \[ x \leq \tan(0.5150) \approx 0.5463 \] ### Step 6: Finding the Interval for \(x\) Since \(\tan^{-1} x\) is defined for all real \(x\), we conclude: \[ x \in (-\infty, 0.5463] \] ### Final Answer Thus, the solution for \(x\) is: \[ x \in (-\infty, \tan(0.5403)] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If [sin ^(-1)(cos^(-1)(sin^(-1)(tan^( -1)x)))]=1 where [.] denotes integer function, then complete set of values of x is :

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is discontinous at

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f