Home
Class 12
MATHS
If tan^(-1) y = 4 tan^(-1) x (|x| lt tan...

If `tan^(-1) y = 4 tan^(-1) x (|x| lt tan (pi)/(8))`. Find y as an algebraic function of x, and, hence, prove that `tan pi//8` is a root of the equation `x^(4) - 6x^(2) + 1= 0`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)y=4tan^(-1)x(|x|

If tan^(-1)y=4tan^(-1)x(|x|

Prove that tan(pi/10) is a root of polynomial equation 5x^4-10 x^2+1=0.

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

If 18x=pi , then prove that tan 2x.tan3x.tan4x.tan8x=1

tan^-1 (x-1)/(x-2) + tan^-1 (x+1)/(x+2)=pi/4. find X

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4