Home
Class 12
MATHS
If x1,x2, x3, x4 are the roots of the eq...

If `x_1,x_2, x_3, x_4` are the roots of the equation `x^4-x^3 sin2 beta+ x^2.cos2 beta-xcos beta-sin beta=0`, then `tan^-1x_1+tan^-1x_2+tan^-1x_3+tan^-1x_4` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1} x_1 + \tan^{-1} x_2 + \tan^{-1} x_3 + \tan^{-1} x_4 \) given the polynomial equation: \[ x^4 - x^3 \sin(2\beta) + x^2 \cos(2\beta) - x \cos(\beta) - \sin(\beta) = 0 \] ### Step 1: Identify the roots and their relationships The roots of the polynomial are \( x_1, x_2, x_3, x_4 \). By Vieta's formulas, we can express the sums and products of the roots in terms of the coefficients of the polynomial: - \( x_1 + x_2 + x_3 + x_4 = \sin(2\beta) \) - \( x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4 = \cos(2\beta) \) - \( x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 = \cos(\beta) \) - \( x_1 x_2 x_3 x_4 = -\sin(\beta) \) ### Step 2: Use the formula for the sum of inverse tangents We can use the formula for the sum of inverse tangents: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] This can be extended for four terms: \[ \tan^{-1} x_1 + \tan^{-1} x_2 + \tan^{-1} x_3 + \tan^{-1} x_4 = \tan^{-1} \left( \frac{x_1 + x_2 + x_3 + x_4 - (x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)}{1 - (x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4)} \right) \] ### Step 3: Substitute the values from Vieta's formulas Substituting the values from Vieta’s relations: - Numerator: \( \sin(2\beta) - \cos(\beta) \) - Denominator: \( 1 - \cos(2\beta) \) ### Step 4: Simplify the denominator Using the identity \( 1 - \cos(2\beta) = 2\sin^2(\beta) \): \[ \tan^{-1} \left( \frac{\sin(2\beta) - \cos(\beta)}{2\sin^2(\beta)} \right) \] ### Step 5: Further simplify the numerator Using the identity \( \sin(2\beta) = 2\sin(\beta)\cos(\beta) \): \[ \tan^{-1} \left( \frac{2\sin(\beta)\cos(\beta) - \cos(\beta)}{2\sin^2(\beta)} \right) = \tan^{-1} \left( \frac{\cos(\beta)(2\sin(\beta) - 1)}{2\sin^2(\beta)} \right) \] ### Step 6: Recognize the tangent form This can be rewritten as: \[ \tan^{-1} \left( \frac{\cos(\beta)}{\sin(\beta)} \cdot \frac{2\sin(\beta) - 1}{2\sin(\beta)} \right) = \tan^{-1} \left( \cot(\beta) \cdot \frac{2\sin(\beta) - 1}{2\sin(\beta)} \right) \] ### Step 7: Final result This can be interpreted as: \[ \tan^{-1} \left( \cot(\beta) \right) = \frac{\pi}{2} - \beta \] Thus, we conclude that: \[ \tan^{-1} x_1 + \tan^{-1} x_2 + \tan^{-1} x_3 + \tan^{-1} x_4 = \frac{\pi}{2} - \beta \] ### Final Answer The value of \( \tan^{-1} x_1 + \tan^{-1} x_2 + \tan^{-1} x_3 + \tan^{-1} x_4 \) is: \[ \frac{\pi}{2} - \beta \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If x_1, x_2, x_3 and x_4 are the roots of the equations x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0, prove that tan^(-1)x_1+tan^(-1)x_2+tan^(-1)x_3+tan^(-1)x_4=(pi/2)-beta .

If tan theta_1,tantheta_2,tan theta_3,tan theta_4 are the roots of the equation x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0 then prove that tan(theta_1+theta_2+theta_3+theta_4)=cot beta

If tan theta_1,tantheta_2,tan theta_3,tan theta_4 are the roots of the equation x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0 then prove that tan(theta_1+theta_2+theta_3+theta_4)=cot beta

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If tan^(- 1)\ 1/4+tan^(- 1)\ 2/9=1/2cos^(- 1)x then x is equal to

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

If alpha " and " beta ( alpha gt beta) are roots of the equation x^(2) - sqrt2 x + sqrt( 3 - 2 sqrt 2 ) = 0", then the value of " ( cos^(-1) alpha + tan^(-1) alpha + tan ^(-1) beta) is equal to

tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x) , x!=0 is equal to

tan 4x = (4tan x(1-tan^2 x))/(1-6tan^2 x + tan^4 x

If alpha and beta are the roots of the equation 2x^(2)+3x+2=0 , find the equation whose roots are alpha+1 and beta+1 .