Home
Class 12
MATHS
If cot^(-1)(n/(pi))>(pi)/6, n in N, then...

If `cot^(-1)(n/(pi))>(pi)/6, n in N`, then the maximum value of n is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \cot^{-1}\left(\frac{n}{\pi}\right) > \frac{\pi}{6} \) where \( n \in \mathbb{N} \), we can follow these steps: ### Step 1: Understand the inequality We start with the inequality: \[ \cot^{-1}\left(\frac{n}{\pi}\right) > \frac{\pi}{6} \] ### Step 2: Apply the cotangent function Since the cotangent function is decreasing, we can apply the cotangent to both sides of the inequality: \[ \frac{n}{\pi} < \cot\left(\frac{\pi}{6}\right) \] ### Step 3: Calculate \( \cot\left(\frac{\pi}{6}\right) \) We know that: \[ \cot\left(\frac{\pi}{6}\right) = \frac{1}{\tan\left(\frac{\pi}{6}\right)} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \] ### Step 4: Substitute back into the inequality Now we substitute this value back into our inequality: \[ \frac{n}{\pi} < \sqrt{3} \] ### Step 5: Solve for \( n \) Multiplying both sides by \( \pi \) gives us: \[ n < \pi \sqrt{3} \] ### Step 6: Approximate \( \pi \sqrt{3} \) Using \( \pi \approx \frac{22}{7} \) and \( \sqrt{3} \approx 1.732 \): \[ \pi \sqrt{3} \approx \frac{22}{7} \times 1.732 \approx \frac{22 \times 1.732}{7} \approx \frac{38.064}{7} \approx 5.43 \] ### Step 7: Determine the maximum value of \( n \) Since \( n \) must be a natural number, the maximum value of \( n \) that satisfies \( n < 5.43 \) is: \[ n = 5 \] ### Conclusion Thus, the maximum value of \( n \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If cot^(-1)(n/(pi))lt(pi)/(6),ninN then find the minimum value of n

If cot^(-1)((n^2-10 n+21. 6)/pi)>pi/6, then the possible values of n is/are (a) 3 (b) 2 (c) 4 (d) 8

If cos^(-1)((n)/(2pi)) gt(2pi)/(3) then maximum and minimum values of integer n are respectively

If cos^(-1)((n)/(2pi))lt(2pi)/(3) then maximum and minimum values of integer in are respectively

If cos^(-1)(n)/(2pi)gt(2pi)/(3) then maximum and minimum values of integer in are respectively

If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N , then the value of int_(0)^(x) [cos t] dt , is

If cot^(-1)((n^2-10 n+21. 6)/pi)>pi/6, where x y<0 then the possible values of z is (are) 3 (b) 2 (c) 4 (d) 8

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n the value of sin^(-1)2x is 6-2pi (b) 2pi-6 pi-3 (d) 3-pi

The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N , is valid is 5.

f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) pi)/n, ( n>1, n in N) then lim_(n rarr oo) f(n)/n^2 is equal to (A) 1/2 (B) 1/3 (C) 2/3 (D) 1