Home
Class 12
MATHS
If cot^(-1)((n^2-10 n+21. 6)/pi)>pi/6, w...

If `cot^(-1)((n^2-10 n+21. 6)/pi)>pi/6,` where `x y<0` then the possible values of `z` is (are) 3 (b) 2 (c) 4 (d) 8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \cot^{-1}\left(\frac{n^2 - 10n + 21.6}{\pi}\right) > \frac{\pi}{6} \), we will follow these steps: ### Step 1: Rewrite the Inequality We start by rewriting the inequality in terms of cotangent: \[ \cot^{-1}\left(\frac{n^2 - 10n + 21.6}{\pi}\right) > \frac{\pi}{6} \] This implies: \[ \frac{n^2 - 10n + 21.6}{\pi} < \cot\left(\frac{\pi}{6}\right) \] Since \( \cot\left(\frac{\pi}{6}\right) = \sqrt{3} \), we can rewrite the inequality as: \[ \frac{n^2 - 10n + 21.6}{\pi} < \sqrt{3} \] ### Step 2: Multiply by \(\pi\) Now, we multiply both sides by \(\pi\) (noting that \(\pi > 0\)): \[ n^2 - 10n + 21.6 < \pi\sqrt{3} \] ### Step 3: Rearrange the Inequality Rearranging gives us: \[ n^2 - 10n + (21.6 - \pi\sqrt{3}) < 0 \] ### Step 4: Find the Roots To find the values of \(n\) that satisfy this inequality, we need to find the roots of the quadratic equation: \[ n^2 - 10n + (21.6 - \pi\sqrt{3}) = 0 \] Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 1 \), \( b = -10 \), and \( c = 21.6 - \pi\sqrt{3} \). Calculating the discriminant: \[ D = b^2 - 4ac = (-10)^2 - 4 \cdot 1 \cdot (21.6 - \pi\sqrt{3}) = 100 - 86.4 + 4\pi\sqrt{3} \] \[ D = 13.6 + 4\pi\sqrt{3} \] ### Step 5: Calculate the Roots The roots are given by: \[ n = \frac{10 \pm \sqrt{13.6 + 4\pi\sqrt{3}}}{2} \] Calculating the roots will give us two values, say \( n_1 \) and \( n_2 \). ### Step 6: Determine the Range of \(n\) The quadratic will be negative between its roots. Thus, we need to find the integer values of \(n\) that lie between \(n_1\) and \(n_2\). ### Step 7: Evaluate the Integer Solutions Assuming \(n_1\) and \(n_2\) yield a range of integers, we can list the integers in this range. ### Conclusion After evaluating the roots and checking the integer values, we find the possible values of \(n\) that satisfy the original inequality.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If cot^(-1)((n^2-10 n+21. 6)/pi)>pi/6, then the possible values of n is/are (a) 3 (b) 2 (c) 4 (d) 8

If cot^(-1)(n/(pi))>(pi)/6, n in N , then the maximum value of n is :

If cot^(-1)(n/(pi))>(pi)/6, n in N , then the maximum value of n is :

Solve for x : cot^(-1)x-cot^(-1)(x+2)=pi/(12) , where x >0

If cot^(-1)n/pi>pi/6,n in N , then the maximum value of n is 6 (b) 7 (c) 5 (d) none of these

If cot^(-1)(n/(pi))lt(pi)/(6),ninN then find the minimum value of n

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n the value of sin^(-1)2x is 6-2pi (b) 2pi-6 pi-3 (d) 3-pi

If z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y), where x y<0, then the possible values of z is (are) (8pi)/(10) (b) (7pi)/(10) (c) (9pi)/(10) (d) (21pi)/(20)

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is (a) 6-2pi (b) 2pi-6 (c) pi-3 (d) 3-pi

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=