Home
Class 12
MATHS
If x(r) " is given by , " x(r+1) = sqrt...

If `x_(r) " is given by , " x_(r+1) = sqrt(1/2 ( 1 + x_(r)))" . Then, show: " cos^(-1) x_(0) = sqrt(1-x_(0)^(2))/(x_(1)x_(2)x_(3))` ......up to infinity .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that: \[ \cos^{-1}(x_0) = \frac{\sqrt{1 - x_0^2}}{x_1 x_2 x_3 \ldots} \] where \( x_{r+1} = \sqrt{\frac{1}{2}(1 + x_r)} \). ### Step 1: Define \( x_0 \) Let \( x_0 = \cos \theta \). ### Step 2: Find \( x_1 \) Using the recursive formula: \[ x_1 = \sqrt{\frac{1}{2}(1 + x_0)} = \sqrt{\frac{1}{2}(1 + \cos \theta)} \] Using the identity \( 1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right) \): \[ x_1 = \sqrt{\frac{1}{2} \cdot 2 \cos^2 \left(\frac{\theta}{2}\right)} = \cos \left(\frac{\theta}{2}\right) \] ### Step 3: Find \( x_2 \) Continuing with the recursion: \[ x_2 = \sqrt{\frac{1}{2}(1 + x_1)} = \sqrt{\frac{1}{2}(1 + \cos \left(\frac{\theta}{2}\right))} \] Using the identity again: \[ 1 + \cos \left(\frac{\theta}{2}\right) = 2 \cos^2 \left(\frac{\theta}{4}\right) \] Thus, \[ x_2 = \sqrt{\frac{1}{2} \cdot 2 \cos^2 \left(\frac{\theta}{4}\right)} = \cos \left(\frac{\theta}{4}\right) \] ### Step 4: Find \( x_3 \) Continuing this process: \[ x_3 = \sqrt{\frac{1}{2}(1 + x_2)} = \sqrt{\frac{1}{2}(1 + \cos \left(\frac{\theta}{4}\right))} \] Using the identity again: \[ 1 + \cos \left(\frac{\theta}{4}\right) = 2 \cos^2 \left(\frac{\theta}{8}\right) \] Thus, \[ x_3 = \sqrt{\frac{1}{2} \cdot 2 \cos^2 \left(\frac{\theta}{8}\right)} = \cos \left(\frac{\theta}{8}\right) \] ### Step 5: Generalize \( x_n \) From the pattern, we can see that: \[ x_n = \cos \left(\frac{\theta}{2^n}\right) \] ### Step 6: Compute the product \( x_1 x_2 x_3 \ldots \) Now we need to compute the infinite product: \[ x_1 x_2 x_3 \ldots = \prod_{n=1}^{\infty} x_n = \prod_{n=1}^{\infty} \cos \left(\frac{\theta}{2^n}\right) \] ### Step 7: Use the identity for sine Using the sine double angle identity: \[ \sin(2x) = 2 \sin(x) \cos(x) \] We can express: \[ \sin(\theta) = 2^n \sin\left(\frac{\theta}{2^n}\right) \prod_{k=1}^{n} \cos\left(\frac{\theta}{2^k}\right) \] Taking the limit as \( n \to \infty \): \[ \lim_{n \to \infty} 2^n \sin\left(\frac{\theta}{2^n}\right) = \theta \] ### Step 8: Substitute back to show the result Thus, we have: \[ \frac{\sqrt{1 - x_0^2}}{x_1 x_2 x_3 \ldots} = \cos^{-1}(x_0) \] ### Conclusion Therefore, we conclude that: \[ \cos^{-1}(x_0) = \frac{\sqrt{1 - x_0^2}}{x_1 x_2 x_3 \ldots} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/(2)) w.r.t. x is

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

The absolute term in P(x) = sum_(r=1)^n (x-1/r)(x-1/(r+1))(x-1/(r+2)) as n approches to infinity is :

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x , when x ne 0 .

Given that y= sqrt( (1-x)/( 1+x)) show that (1-x^(2) ) (dy)/( dx) + y=0