Home
Class 12
MATHS
Express: cot^-1 (y/((1-x^2-y^2)))=2tan^-...

Express: `cot^-1 (y/((1-x^2-y^2)))=2tan^-1 sqrt((3-4x^2)/(4x^2))- tan^-1 sqrt (3-4x^2)/x^2` as a rational integral equation in x and y.

Text Solution

AI Generated Solution

The correct Answer is:
To express the equation \( \cot^{-1} \left( \frac{y}{\sqrt{1 - x^2 - y^2}} \right) = 2 \tan^{-1} \left( \sqrt{\frac{3 - 4x^2}{4x^2}} \right) - \tan^{-1} \left( \frac{\sqrt{3 - 4x^2}}{x^2} \right) \) as a rational integral equation in \( x \) and \( y \), we can follow these steps: ### Step 1: Rewrite the Left-Hand Side (LHS) We know that: \[ \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \] Thus, we can rewrite the LHS: \[ \cot^{-1} \left( \frac{y}{\sqrt{1 - x^2 - y^2}} \right) = \tan^{-1} \left( \frac{\sqrt{1 - x^2 - y^2}}{y} \right) \] ### Step 2: Rewrite the Right-Hand Side (RHS) Using the double angle formula for tangent: \[ 2 \tan^{-1}(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] Let \( x = \sqrt{\frac{3 - 4x^2}{4x^2}} \). Then: \[ 2 \tan^{-1} \left( \sqrt{\frac{3 - 4x^2}{4x^2}} \right) = \tan^{-1} \left( \frac{2\sqrt{\frac{3 - 4x^2}{4x^2}}}{1 - \frac{3 - 4x^2}{4x^2}} \right) \] Simplifying the denominator: \[ 1 - \frac{3 - 4x^2}{4x^2} = \frac{4x^2 - (3 - 4x^2)}{4x^2} = \frac{8x^2 - 3}{4x^2} \] So, the RHS becomes: \[ \tan^{-1} \left( \frac{2\sqrt{\frac{3 - 4x^2}{4x^2}} \cdot 4x^2}{8x^2 - 3} \right) - \tan^{-1} \left( \frac{\sqrt{3 - 4x^2}}{x^2} \right) \] ### Step 3: Combine the Two Terms on the RHS Using the formula for the difference of two arctangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1} \left( \frac{a - b}{1 + ab} \right) \] Let \( a = \frac{2\sqrt{\frac{3 - 4x^2}{4x^2}} \cdot 4x^2}{8x^2 - 3} \) and \( b = \frac{\sqrt{3 - 4x^2}}{x^2} \). We can combine these into a single arctangent expression. ### Step 4: Set LHS Equal to RHS Now we have: \[ \tan^{-1} \left( \frac{\sqrt{1 - x^2 - y^2}}{y} \right) = \tan^{-1} \left( \text{combined expression from RHS} \right) \] ### Step 5: Eliminate the Arctangent By taking the tangent of both sides, we get: \[ \frac{\sqrt{1 - x^2 - y^2}}{y} = \text{combined expression from RHS} \] ### Step 6: Cross Multiply and Simplify Cross-multiplying gives: \[ \sqrt{1 - x^2 - y^2} = y \cdot \text{combined expression from RHS} \] Squaring both sides leads to: \[ 1 - x^2 - y^2 = y^2 \cdot \text{(RHS expression)}^2 \] ### Step 7: Rearranging Rearranging gives us a rational integral equation in \( x \) and \( y \). ### Final Result After simplification, we will arrive at a final equation of the form: \[ 27y^2 = x^2(8 - x^2) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))