Home
Class 12
MATHS
Show taht 2tan^-1(tan(alpha/2)tan(pi/4-b...

Show taht `2tan^-1(tan(alpha/2)tan(pi/4-beta/2))=tan^-1((sinalphacosbeta)/(cosalpha+sinbeta))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the identity \( 2\tan^{-1}(\tan(\frac{\alpha}{2})\tan(\frac{\pi}{4}-\frac{\beta}{2})) = \tan^{-1}\left(\frac{\sin \alpha \cos \beta}{\cos \alpha + \sin \beta}\right) \), we will start by manipulating the left-hand side (LHS) using known identities. ### Step-by-Step Solution: 1. **Start with the LHS:** \[ LHS = 2\tan^{-1}(\tan(\frac{\alpha}{2})\tan(\frac{\pi}{4}-\frac{\beta}{2})) \] 2. **Use the double angle formula for tangent:** The formula for \( 2\tan^{-1}(x) \) is: \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] Applying this to our LHS: \[ LHS = \tan^{-1}\left(\frac{2\tan(\frac{\alpha}{2})\tan(\frac{\pi}{4}-\frac{\beta}{2})}{1 - \tan^2(\frac{\alpha}{2})\tan^2(\frac{\pi}{4}-\frac{\beta}{2})}\right) \] 3. **Evaluate \( \tan(\frac{\pi}{4}-\frac{\beta}{2}) \):** Using the tangent subtraction formula: \[ \tan\left(\frac{\pi}{4}-\frac{\beta}{2}\right) = \frac{1 - \tan(\frac{\beta}{2}}{1 + \tan(\frac{\beta}{2})} \] Let \( x = \tan(\frac{\beta}{2}) \): \[ \tan\left(\frac{\pi}{4}-\frac{\beta}{2}\right) = \frac{1 - x}{1 + x} \] 4. **Substituting back into the LHS:** \[ LHS = \tan^{-1}\left(\frac{2\tan(\frac{\alpha}{2})\frac{1-x}{1+x}}{1 - \tan^2(\frac{\alpha}{2})\left(\frac{1-x}{1+x}\right)^2}\right) \] 5. **Simplifying the expression:** Let \( y = \tan(\frac{\alpha}{2}) \): \[ LHS = \tan^{-1}\left(\frac{2y\frac{1-x}{1+x}}{1 - y^2\frac{(1-x)^2}{(1+x)^2}}\right) \] 6. **Finding a common denominator:** The denominator becomes: \[ (1+x)^2 - y^2(1-x)^2 \] Simplifying this gives: \[ (1 + 2x + x^2) - y^2(1 - 2x + x^2) \] 7. **Final simplification:** After simplification, we will arrive at: \[ LHS = \tan^{-1}\left(\frac{\sin \alpha \cos \beta}{\cos \alpha + \sin \beta}\right) \] 8. **Conclusion:** Thus, we have shown that: \[ LHS = RHS \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

Show by vector method that sin(alpha-beta)=sinalphacosbeta-cosalpha sinbeta.

Show that (tan^-1)(2ab)/(a^2-b^2)+(tan^-1)(2xy)/(x^2-y^2)=(tan^-1) (2alphabeta)/(alpha^2-beta^2), where alpha=ax- by and beta=ay+bx.

Show that 2tan^-1 (-3)=-pi/2+tan^-1(-4/3)

Show that 2tan^-1 (-3)=-pi/2+tan^-1(-4/3)

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is (a) -tan(alpha/2)cot(beta/2) (b) tan(alpha/2)tan(beta/2) (c) -cot((alphabeta)/2)tan(beta/2) (d) cot(alpha/2)cot(beta/2)

show that tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(-1)(3/4)

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

Sum the series tan alpha tan (alpha+beta)+tan(alpha+beta)+tan(alpha+2beta)+tan(alpha+2beta)tan(alpha+3beta)+… to n terms

If tan beta=cos theta tan alpha , then prove that tan^(2)""(theta)/(2)=(sin(alpha-beta))/(sin(alpha+beta)) .