Home
Class 12
MATHS
Let a, b and c be positive real numbers....

Let a, b and c be positive real numbers. Then prove that `tan^(-1) sqrt((a(a + b + c))/(bc)) + tan^(-1) sqrt((b (a + b + c))/(ca)) + tan^(-1) sqrt((c(a + b+ c))/(ab)) =' pi'

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 7|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 6|1 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If a , b , c >0 and s=(a+b+c)/2 , prove that tan^(-1)sqrt((2a s)/(b c))+tan^(-1)sqrt((2b s)/(c a))+tan^(-1)sqrt((2c s)/(a b))=pi

If a , b , c >0 and s=(a+b+c)/2,p rov et h a t tan^(-1)sqrt((2a s)/(b c))+tan^(-1)sqrt((2b s)/(c a))+tan^(-1)sqrt((2c s)/(a b))=pi

Prove that : tan^(-1)( (a^3 -b^3)/(1+a^3 b^3)) + tan^(-1)( (b^3 - c^3)/(1+b^3 c^3)) + tan^(-1)( (c^3 - a^3)/(1+c^3 a^3)) = 0

If a,b,c are real positive numbers and theta =tan^(-1)[(a(a+b+c))/(bc)]^(1/2)+tan^(-1)[(b(a+b+c))/(ca)]^(1/2)+tan^(-1)[(c(a+b+c))/(ab)]^(1/2) , then tantheta equals

If a ,\ b ,\ c are positive real numbers, then sqrt(a^(-1)b)\ xx\ sqrt(b^(-1)\ c)\ xx\ sqrt(c^(-1)a) is equal to: (a)\ 1 (b) a b c (c) sqrt(a b c) (d) 1/(a b c)

Prove that tan^(-1)((a-b)/(1+ab))+ tan^(-1)((b-c)/(1+bc))+tan^(-1)((c-a)/(1+ca))=0 , ab>(-1), bc>(-1), ca>(-1)

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

Prove that 2tan^(-1)(sqrt((a-b)/(a+b))tan(theta/2))=cos^(-1)((acostheta+b)/(a+bcostheta))

prove that 2tan^-1(sqrt((a-b)/(a+b))tan(theta/2)) = cos^-1((acostheta+b)/(a+bcostheta))

Prove that (1)/(a) + (1)/(b) + (1)/(c ) ge (1)/(sqrt((bc))) + (1)/(sqrt((ca))) + (1)/(sqrt((ab))) , where a,b,c gt 0