Home
Class 12
MATHS
If the quadratic equation , 4^(sec^(2)...

If the quadratic equation ,
`4^(sec^(2)alpha) x^(2) + 2x + (beta^(2)- beta + 1/2) = 0` have real roots, then find all the possible value of `cos alpha + cos^(-1) beta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given quadratic equation and determine the conditions under which it has real roots. The equation is: \[ 4^{\sec^2 \alpha} x^2 + 2x + \left( \beta^2 - \beta + \frac{1}{2} \right) = 0 \] ### Step 1: Identify coefficients In the standard form of a quadratic equation \( ax^2 + bx + c = 0 \), we can identify: - \( a = 4^{\sec^2 \alpha} \) - \( b = 2 \) - \( c = \beta^2 - \beta + \frac{1}{2} \) ### Step 2: Use the discriminant condition For the quadratic equation to have real roots, the discriminant \( D \) must be greater than or equal to zero: \[ D = b^2 - 4ac \geq 0 \] Substituting the identified coefficients: \[ D = 2^2 - 4 \cdot 4^{\sec^2 \alpha} \cdot \left( \beta^2 - \beta + \frac{1}{2} \right) \geq 0 \] This simplifies to: \[ 4 - 4 \cdot 4^{\sec^2 \alpha} \cdot \left( \beta^2 - \beta + \frac{1}{2} \right) \geq 0 \] ### Step 3: Rearranging the inequality Rearranging the inequality gives: \[ 1 \geq 4^{\sec^2 \alpha} \cdot \left( \beta^2 - \beta + \frac{1}{2} \right) \] This can be rewritten as: \[ \beta^2 - \beta + \frac{1}{2} \leq \frac{1}{4^{\sec^2 \alpha}} \] ### Step 4: Analyze the quadratic function The expression \( \beta^2 - \beta + \frac{1}{2} \) is a quadratic function in \( \beta \). To find its minimum value, we can complete the square or use the vertex formula: The vertex of the quadratic \( ax^2 + bx + c \) occurs at \( \beta = -\frac{b}{2a} \): \[ \beta = \frac{1}{2} \] Substituting \( \beta = \frac{1}{2} \) into the quadratic gives: \[ \left( \frac{1}{2} \right)^2 - \frac{1}{2} + \frac{1}{2} = \frac{1}{4} - \frac{1}{2} + \frac{1}{2} = \frac{1}{4} \] Thus, the minimum value of \( \beta^2 - \beta + \frac{1}{2} \) is \( \frac{1}{4} \). ### Step 5: Set up the inequality Now we can set up the inequality: \[ \frac{1}{4} \leq \frac{1}{4^{\sec^2 \alpha}} \] This implies: \[ 4^{\sec^2 \alpha} \leq 4 \] Taking logarithm base 4 on both sides: \[ \sec^2 \alpha \leq 1 \] Since \( \sec^2 \alpha \geq 1 \) for all \( \alpha \), we conclude that: \[ \sec^2 \alpha = 1 \implies \alpha = n\pi \quad (n \in \mathbb{Z}) \] ### Step 6: Find values of \( \cos \alpha + \cos^{-1} \beta \) Since \( \sec^2 \alpha = 1 \), we have \( \cos \alpha = 1 \) or \( \cos \alpha = -1 \). 1. If \( \cos \alpha = 1 \): \[ \cos \alpha + \cos^{-1} \beta = 1 + \cos^{-1} \left( \frac{1}{2} \right) = 1 + \frac{\pi}{3} = \frac{3}{3} + \frac{\pi}{3} = \frac{3 + \pi}{3} \] 2. If \( \cos \alpha = -1 \): \[ \cos \alpha + \cos^{-1} \beta = -1 + \cos^{-1} \left( \frac{1}{2} \right) = -1 + \frac{\pi}{3} = \frac{-3 + \pi}{3} \] ### Final Answer Thus, the possible values of \( \cos \alpha + \cos^{-1} \beta \) are: \[ \frac{3 + \pi}{3} \quad \text{and} \quad \frac{-3 + \pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 7|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 6|1 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta (alpha gt beta) are the roots of x^(2) + kx - 1 =0 , then find the value of tan^(-1) alpha - tan^(-1) beta

If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the equation 8x ^(2) -26x + 15 =0, then find the value of cos (alpha + beta).

If alpha,beta in R and the quadratic equations x^2+2x+7=0a n d4x^2+alphax+beta=0 have atleast one common roots, then the value of alpha+beta is

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If the roots of the equation x^(2)+px+7=0 are denoted by alpha and beta , and alpha^(2)+beta^(2)=22 , find the possible values of p.

If alpha and beta are non-real, then condition for x^(2) + alpha x + beta = 0 to have real roots, is

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of 2alpha^(2)beta^(2) is

If alpha and beta are the roots of the equation x^2+sqrt(alpha)x+beta=0 then the values of alpha and beta are -