Home
Class 12
MATHS
The value of cot (underset(n=1)overset(2...

The value of `cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k))` is

A

`23/25`

B

`25/23`

C

`23/24`

D

`24/23`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 7|1 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

let underset(r=0)overset(2010)(sum)a_(r)x^(r)=(1+x+x^(2)+x^(3)+x^(4)+x^(5))^(402) and underset(r=0)overset(2010)(sum)a_(r)=a, then the value of ((underset(r=0)overset(2010)(sum)r.a_(r))/(underset(r=0)overset(2010)(sum)a_(r))) is equal to____.

Find the underset(k=1)overset(oo)sumunderset(n=1)overset(oo)sumk/(2^(n+k)) .

Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset(10)sum tan^(-1) ((r)/(s))

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The value of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum),C_(r),C_(S) is

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The values of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum)(C_(r)+C_(S)) is

If n and l are respectively the principal and azimuthal quantum numbers , then the expression for calculating the total number of electrons in any energy level is : (a) underset(l=0)overset(l=n)sum2(2l+1) (b) underset(l=1)overset(l=n)sum2(2l+1) (c) underset(l=0)overset(l=n)sum2(2l+1) (d) underset(l=0)overset(l=n-1)sum2(2l+1)

If f(x) = (a^(x))/(a^(x) + sqrt(a)), a gt 0 prove that (i) f(x) + f(1-x) = 1 (ii) underset(k=1)overset(2n-1)sum 2f ((k)/(2n)) = 2n-1 (iii) underset(k=1)overset(2n)sum 2f((k)/(2n+1)) = 2n

Let S_(k)=underset(ntooo)limunderset(i=0)overset(n)sum(1)/((k+1)^(i))." Then "underset(k=1)overset(n)sumkS_(k) equals

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

If x = underset(n-0)overset(oo)sum a^(n), y= underset(n =0)overset(oo)sum b^(n), z = underset(n =0)overset(oo)sum C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in