Home
Class 12
MATHS
If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi...

If `sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 `, then the value of x is

A

1

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rewrite the equation using the identity We know that: \[ \sin^{-1}(a) + \csc^{-1}(b) = \frac{\pi}{2} \text{ if } a = \frac{1}{b} \] In our case, we can rewrite the equation as: \[ \sin^{-1}\left(\frac{x}{5}\right) + \sin^{-1}\left(\frac{4}{5}\right) = \frac{\pi}{2} \] ### Step 2: Set up the equation Let: \[ \theta = \sin^{-1}\left(\frac{4}{5}\right) \] Then we can express the equation as: \[ \sin^{-1}\left(\frac{x}{5}\right) + \theta = \frac{\pi}{2} \] ### Step 3: Isolate \( \sin^{-1}\left(\frac{x}{5}\right) \) Rearranging gives us: \[ \sin^{-1}\left(\frac{x}{5}\right) = \frac{\pi}{2} - \theta \] ### Step 4: Apply the sine function Taking the sine of both sides: \[ \sin\left(\sin^{-1}\left(\frac{x}{5}\right)\right) = \sin\left(\frac{\pi}{2} - \theta\right) \] This simplifies to: \[ \frac{x}{5} = \cos(\theta) \] ### Step 5: Find \( \cos(\theta) \) From the right triangle definition, since \( \sin(\theta) = \frac{4}{5} \), we can find \( \cos(\theta) \) using the Pythagorean theorem: \[ \cos^2(\theta) + \sin^2(\theta) = 1 \] \[ \cos^2(\theta) + \left(\frac{4}{5}\right)^2 = 1 \] \[ \cos^2(\theta) + \frac{16}{25} = 1 \] \[ \cos^2(\theta) = 1 - \frac{16}{25} = \frac{9}{25} \] \[ \cos(\theta) = \frac{3}{5} \] ### Step 6: Substitute back to find \( x \) Substituting back into the equation: \[ \frac{x}{5} = \frac{3}{5} \] Multiplying both sides by 5 gives: \[ x = 3 \] ### Final Answer Thus, the value of \( x \) is \( 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 7|1 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)(x/5)+cose c^(-1)(5/4)=pi/2 then the value of x is: (1) 1 (2) 3 (3) 4 (4) 5

If sin ^(-1)""(x)/(3) +cosec ^(-1) ""(13)/(12) = (pi)/(2) , then x is

If (sin^(-1) a)^(2) +( cos^(-1) b)^(2) + ( sec^(-1)c)^(2) + ( cosec^(-1) d)^(2) = ( 5pi^(2))/2 " , then the value of " ( sin^(-1)a)^(2) - ( cos^(-1)b) ^(2) + ( sec^(-1)c)^(2) - ( cosec^(-1)d)^(2)

If (sin^(-1) x)^2 + (cos^(-1)x)^2 =(5pi^2)/8 then one of the values of x is

If sin^(-1)(5/x)+cos^(-1)(x/5)=pi/2 ,then find x.

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is (a) 6-2pi (b) 2pi-6 (c) pi-3 (d) 3-pi

If sin^(-1) x = pi//5 , for some x in (-1, 1) , then find the value of cos^(-1) x

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

If sin ^(-1) x =(pi)/(4) , find the value of cos^(-1) x .