Home
Class 12
MATHS
Let (6sqrt(6)+14)^(2n+1)=R, if f be the ...

Let `(6sqrt(6)+14)^(2n+1)=R`, if f be the fractional part of R, then prove that `Rf=20^(2n+1)`

Text Solution

AI Generated Solution

To solve the problem, we need to prove that if \( R = (6\sqrt{6} + 14)^{2n+1} \) and \( f \) is the fractional part of \( R \), then \( Rf = 20^{2n+1} \). ### Step-by-step Solution: 1. **Define \( R \) and \( f \)**: \[ R = (6\sqrt{6} + 14)^{2n+1} \] ...
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Statement-1: The integeral part of (8+3sqrt(7))^(20) is even. Statement-2: The sum of the last eight coefficients in the expansion of (1+x)^(16) is 2^(15) . Statement-3: if R(5sqrt(5)+11)^(2n+1)=[R]+F , where [R] denotes the greatest integer in R, then RF=2^(2n+1) .

Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest integer function, prove that Rf=4^(2n+1)

Consider the binomial expansion of R = (1 + 2x )^(n) = I + f , where I is the integral part of R and f is the fractional part of R , n in N . Also , the sum of coefficient of R is 2187. The value of (n+ Rf ) "for x" = (1)/(sqrt(2)) is

Consider the binomial expansion of R = (1 + 2x )^(n) = I = f , where I is the integral part of R and f is the fractional part of R , n in N . Also , the sum of coefficient of R is 2187. If ith term is the geratest term for x= 1/3, then i equal

Consider the binomial expansion of R = (1 + 2x )^(n) = I = f , where I is the integral part of R and f is the fractional part of R , n in N . Also , the sum of coefficient of R is 2187. If kth term is having greatest coefficient , the sum of all possible value of k, is

If (6 sqrt6+14)^(2n+1)=R and F=[R] , where [R] denotes the greatest integer less than or equal to R thwn RF=

If R = (7 + 4 sqrt(3))^(2n) = 1 + f , where I in N and 0 lt f lt 1 , then R (1 - f) equals

If the coefficients of a^(r-1),\ a^r and \ a^(r+1) in the binomial expansion of (1+a)^n are in A.P., prove that n^2-n(4r+1)+4r^2-2=0.

If for positive integers r gt 1, n gt 2 , the coefficients of the (3r) th and (r+2) th powers of x in the expansion of (1+x)^(2n) are equal, then prove that n=2r+1 .

Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N then the remainder when f (1) + f (2) + f (3) + ..... + f (60) is divided by 9 is.

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let (6sqrt(6)+14)^(2n+1)=R, if f be the fractional part of R, then pro...

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |