Home
Class 12
MATHS
(1 + x)^(n) = C(0) + C(1) x + C(2) x^(2)...

`(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n)` , prove
that ` C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0 `

Text Solution

Verified by Experts

Numerical value of last term of
` C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + …(-1)^(n) (n+1) C_(n)` is
`(n+1) C_(n) "I.e., " (n +1) ` , then
`n+ 1 = n*1 + 1 `
`{:("n)n(1"),(" "underline(-n)),(" "underline0):}`
Here , q = 1 and r = 1
The given series is
` (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) + ...+ C_(n) x^(3)`
On multiplying both sides by x , we get
` x (1 + x)^(n) = C_(0) x + C_(1) x + C_(1) x^(2) + C_(2) x^(3) + C_(3) x^(4) + ...x C_(n) x^(n+1)`
On differentiating both sides w.r.t.x, we get
` x *n (1 + x)^(n-1) + (1 + x)^(n) * 1 = C_(0) + 2C_(1) x + 3C_(2) x^(2)`
` = 4C_(3) x^(3) + ... + (n+1) C_(n) x^(n)`
Putting x = - 1 , we get
` 0 = C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + ... + (-1)^(n)(n+1) C_(n)`
or ` C_(0) - 2C_(1) + 3C_(2) + 4C_(3) + ... + (-1)^(n) (n+1) C_(n)`
I Aliter
`LHS = C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + ...+ (-1)^(n) (n+1) C_(n)`
` = C_(0) - (C_(1) + C_(1)) + (C_(2) + 2C_(2)) - (C_(3) + 3C_(3)) + ...+ (-1)^(n) { C_(n) + n C_(n)} `
` = {C_(0) - C_(1) + C_(2) - C_(3) + ...+ (-1)^(n) C_(n)}`
` + {(- C_(1) + 2C_(2) - 3C_(2) - 3C_(3) + ...+ (-1)^(n) n C_(n)}`
`= (1-1)^(n)+ {{:(-n+ 2*(n(n-1))/(1*2) - 3 (n(n-1)(n-2))/(1*2*3)),(+ ...+ (-1)^(n) *n):}}`
`= n{""^(N)C_(0)- ""^(N)C_(1)+""^(N)C_(2)- ...+ (-1)^(N)""^(N)C_(N)}`
` = n(1-1)^(N) = 0 = RHS `
II.Aliter
LHS `= C_(1) - 2C_(2) + 3C_(3)- ...+ (-1)^(n-1) . nC_(n)`
` = sum_(r=1)^(n) (-1)^(r-1). r . ""^(r)C_(r)`
`= sum_(r=1)^(n) (-1)^(r-1)*n*""^(n-1)C_(r-1) [ because ""^(n)C_(r)= (n)/(r) *""^(n-1)C_(r-1)]`
`= nsum_(r=1)^(n) (-1)^(r-1)*^(n-1)C_(r-1)`
` = n(1-1)^(n-1)*= 0= RHS `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , show that C_(1) - (C_(2))/(2) + (C_(3))/(3) - …(-1)^(n-1) (C_(n))/(n) = 1 + (1)/(2) + (1)/(3) + …+ (1)/(n) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , find the sum of the series (C_(0))/(2) -(C_(1))/(6) + (C_(2))/(10) + (C_(3))/(14) -...+ (-1)^(n) (C_(n))/(4n+2) .

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + C(3) x^(3) + … + C(n) x^(n)...

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |