Home
Class 12
MATHS
3C0+3^2(C1)/2+3^3(C2)/3+.............3^(...

`3C_0+3^2(C_1)/2+3^3(C_2)/3+.............3^(n+1)*(C_n)/(n+1)` eqaul to

Text Solution

Verified by Experts

`because (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + ...+ C_(n) x^(n) `...(i)
Integrating on both sides of Eq. (i) within limits 0 to , we get
`int_(0)^(3)(1 + x)^(n) dx = int_(0)^(3)(C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + ...+ C_(n) x^(n)) dx `
`rArr [((1+ x)^(n+1))/(n+1)]_(0)^(3) = [C_(0) x+ (C_(1) x^(2))/(2) + (C_(2) x^(3))/(3) + (C_(3)x^4)/(4) + ...+ (C_(n) x^(n+1))/(n+1)]_(0)^(3)`
`rArr (4^(n+1)-1)/(n+1) = 3C_(0) + (3^(2)C_(1))/(2) + (3^(3)C_(2))/(3) + (3^(4)C_(3))/(4) + ...+ (3^(n+1)C_(n))/(n+1)`
Hence ,
`3C_(0) + (3^(2)C_(1))/(2) + (3^(3) C_(2))/(3) + (3^(4)C_(3))/(4) + ...+ (3^(n+1) C_(n))/(n+1) = (4^(n+1)-1)/(n+1)`
I.Aliter
`LHS = 3C_(0) + (3^(2)C_(1))/(2) + (3^(2) C_(2))/(3) + (3^(4) C_(3))/(4) + ...+ (3^(n+1)C_(n))/(n+1) `
`= 3.1 + (3^(2) *n)/(2) + (3^(3).(n-1))/(1*2*3) + (3^(4) .n(n-1)(n-2))/((1*2*3*4) ) + ...+ (3^(n+1))/(n+1)`

`= (1)/((n+1))[3*(n+1)+(3^(2)(n+1)n)/(1*2) + (3^(3) (n+1) n(n-1))/(1*2*3) + (3^(4) (n+1)n(n-1)(n-2))/(1*2*3*4) + ..+ 3^(n+1)]`
Put n + 1 = N , then
`LHS= (1)/(N) [3N + (3^(2) N(N-1))/(2!) + (3^(3)N(N-1)(N-2))/(3!)+ (3^(3)N(N-1)(N-2)(N-3))/(4!)+...+ 3^(N)]`
`= (1)/(N)[""^(N)C_(1) (3) + ""^(N)C_(2) (3)^(2) + ""^(N)C_(3) (3)^(3) + ...+ ""^(N)C_(N) (3)^(N) ]`
` = (1)/(N)[""^(N)C_(0) + ""^(N)C_(1)(3) + ""^(N)C_(2)(3)^(2) + ""^(N)C_(3) (3)^(3) + ...+ ""^(N)C_(n) (3)^(N) - ""^(N)C_(0)]`
` = (1)/(N){(1+3)^(N)-1} = (4^(N) -1)/(N) = (4^(n+1)-1)/(n+1) = RHS `
`LHS = 3C_(0) + 3^(2) (C_(1))/(2) + (3^(3) C_(2))/(3) + (3^(4)C_(3))/(4) + ...+ (3^(n+1)C_(n))/(n+1)`
`= sum_(r=0)^(n) (3^(r+1)*""^(n)C_(r))/((r+1))= sum_(r=0)^(n) (3^(r+1)*""^(n+1)C_(r+1))/((n+1)) " "[because (""^(n+1)C_(r+1))/(n+1) = (""^(n)C_(r))/(r+1)]`
`= (1)/((n+1)) sum_(r=0) ^(n) ""^(n+1)C_(r+1) *3^(r+1)`
`= (1)/((n+1)) (""^(n+1)C_(1) *3+""^(n+1)C_(2)*3^(2) + ""^(n+1)C_(3) *3^(3) + ""^(n+1)C_(n+1) *3^(n+1))`
`= (1)/((n+1)) [(1 + 3)^(n+1" - " n+1)C_(0)]`
` = (4^(n+1)-1)/(n+1) = RHS `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n in N prove that (a) 3 C_0- 8C_1+13C_2-18C_3+...."upto" (n+1) term=0 if n ge 2 (b ) 2C_0+2^2(C_1)/(2)+2^3(C_2)/(3)+2^4C_(3)/4+....+2^(n+1)(C_n)/(n+1)=(3^n+1-1)/(n+1) ( c) C_0^2+(C_1^2)/2+C_2^2/3+....+C_n^2/(n+1)=((2n+1)!)/(((n+1)!)^2)

Statement-1: (C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2)) Statement-2: (C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx

(C_0)/(1. 3)-(C_1)/(2. 3)+(C_2)/(3. 3)-(C_3)/(4. 3)+...... +(-1)^n(C_n)/((n+1)*3) is

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

If n > 3, then x y C_0-(x-1)(y-1)C_1+(x-2)(y-2)C_2-(x-3)(y-3)C_3+..............+(-1)^n(x-n)(y-n)C_n, equals

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n , show that 3.C_0+3^2.C_1/2+3^3.C_2/2+.+3^(n+1). C_n/(n+1)=(4^(n+1)-1)/(n+1)

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)-2C_(1)+3C_(2)-. . . .+(-1)^(n)(n+1)C_(n) is equal to

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. 3C0+3^2(C1)/2+3^3(C2)/3+.............3^(n+1)*(Cn)/(n+1) eqaul to

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |