Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1) x + C(2) x^...

If `(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n)`,
Show that `(2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2)-2n-5)/((n+1)(n+2))`

Text Solution

Verified by Experts

Given,
Integrating on both sides of Eq. (i) within limits 0 to 3, we get
`int_(0)^(3)(1 + x)^(n) dx = int_(0)^(3)(C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + ...+ C_(n) x^(n)) dx `
`rArr [((1 + x)^(n+1))/(n+1)]_(0)^(x)`
` = [C_(0) x + (C_(1) x^(2))/(2) + (C_(2)x^(3))/(3) + ...+ (C_(n) x^(n+1))/(n+1)]_(0)^(x)`
`rArr ((1 +x)^(n+1)-1)/((n+1))= C_(0) x + (C_(1) x^(2))/(2) + (C_(1) x^(3))/(3) + ...+ (C_(n) x^(n+1))/(n+1) ` ...(ii)
Again, integrating both sides of Eq.(ii) within limits 0 to 2, we get
`int_(0)^(2) (C_(0) x + (C_(1)x^(2))/(2) + (C_(2) x^(3))/( 3) + ...+ (C_(n) x^(n+1))/(n+1))dx `
` rArr (1)/((n+1)) (((1+ x)^(n+1))/(n+2)- x)]_(0)^(2) = [(C_(0)x^(2))/(1*2) + (C_(1)x^(3))/(2*3) + (C_(2)x^(4))/(3*4)+ ...+ (C_(n) x^(n+2))/((n+1)(n+2))]_(0)^(2)`
`rArr (1)/((n+1)) {(3^(n+2))/(n+2) -2-(1)/(n+2)} = (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) + C_(1) (2^(4))/(3*4) C_(2)+ ...+ (2^(n+2)C_(n))/((n+1)(n+2))`
Hence , `(2^(2))/(1*2)C_(0) + (2^(3))/(2*3) + C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_(n))/((n+1)(n+2))= (3^(n+2) -2n-5)/((n+1)(n+2))`
I.Aliter
`LHS = (2^(2))/(1*2)C_(0) + (2^(3))/(2*3)C_(1) + (2^(4))/(3*4) + C_(2) + ...+ (2^(n+2)C_(n))/((n+1)(n+2))`
` = (2^(2))/(1*2)(1) + (2^(3))/(2*3)n + (2^(4))/(3*4) + (n(n-1))/(1*2) + ...+ (2^(n+2).1)/((n+1)(n+2))`
`(1)/((n+1)(n+2)) {((n+2)(n+1))/(1*2)2^(2) + ((n+2)(n+1)n)/(1*2*3) 2^(3) + ((n+2)(n+1)n(n-1))/(1*2*3*4) 2^(4) + ...+ 2^(n+2)}`
Put n+2 = N , then we get
`= (1)/(N(N-1)){(N(N-1))/(1*2) 2^(2) + (N(N-1)(N-2))/(1*2*3)+ (N(N-1)(N-2)(N-3))/(1*2*3*4) 2^(4) + ... + 2^(N)}`
`= (1)/(N(N-1)){""^(N)C_(2)(2)^(2) + ""^(N)C_(3)(2)^(3) + ""^(N)C_(4) + (2)^(4) + ...+ ""^(N)C_(N) (2)^(N)]`
`= (1)/(N(N-1)){""^(N)C_(0) + ""^(N)C_(1)(2) + ""^(N)C_(4) + (2)^(2) + ""^(N)C_(3)(2)^(3) + ""^(N)C_(4) (2)^(4) + ...+ ""^(N)C_(N)- (2)^(N)-""^(N)C_(0) - ""^(N)C_(1)(2)]`
`= (1)/(N(N-1)) {(1+ 2)^(N) -1-2N}`
`= (3^(n+2)-1-2(n+2))/((n+2)(n+1)) = (3^(n+2) - 2n-5)/((n+1)(n+2))= RHS `
II.Aliter
LHS = `(2^(2))/(1*2) *C_(0) + (2^(3))/(2*3) *C_(1) + (2^(4))/(3*4) *C_(2) + ...+ (2^(n+2)*C_(n))/((n+1)(n+2))`
` = sum_(r=1)^(n+1) (2^(r+1))/(r +1)*""^(n)C_(r-1)`
` = sum_(r=1)^(n+1) (2^(r+1)*""^(n+2)C_(r+1))/((n+1)(n +2))[because (""^(n+2)C_(r+1))/((n+1)(n+2)) = (""^(n)C_(r-1))/(r(r+1))]`
`= (1)/((n+1)(n+2) )sum_(r=1)^(n+1) ""^(n+2)C_(r+1) *2^(r+1)`
`= (1)/((n + 1)(n+2))[""^(n+1)C_(2) *2^(2) + ""^(n +2)C_(3)*2^(3) +...+ ""^(n+2)C_(n+2) *2^(n+2)]`
`= (1)/((n + 1)(n+2))[(1 + 2)^(n+2" - "n +2)C_(0) - ""^(n+2)C_(1) *2^(1)]`
` = ((3^(n+2) - 2n-5))/((n+1)(n+2)) = RHS ` .
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , show that C_(1) - (C_(2))/(2) + (C_(3))/(3) - …(-1)^(n-1) (C_(n))/(n) = 1 + (1)/(2) + (1)/(3) + …+ (1)/(n) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + … + C(n) x^(n), Show ...

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |