Home
Class 12
MATHS
Prove that C0Cr+C1 C(r+1)+ C2 C(r+2)+.....

Prove that `C_0C_r+C_1 C_(r+1)+ C_2 C_(r+2)+...............+c_(n-r) C_n=((2n)!)/((n-r)!(n+r)!)`

Text Solution

Verified by Experts

i.e., ` r - 0 = r + 1 - 1 = r + 2 - 2 = …= n -(n-r) = r ` Given ,
` (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) + …+ C_(n-r) x^(n-r) + …+ C_(n) x^(n)` …(i)
Now ,
` (x + 1)^(n) = C_(0) x^(n) + C_(1) x^(n-1) + C_(2) x^(n-2) + ...+ C_(r) x^(n-r) + C_(r+1) x^(n-r-1) + C_(r+2) x^(n-r-2) + ...C_(n)` ...(ii)
On multiplying Eqs.(i) and (ii) , we get
` (1 +x)^(2n) = (C_(0) + C_(1) x + C_(2)x^(2) + ... + C_(n-r) x^(n-r) + ...+ C_(n) x^(n)) xx(C_(0) x^(n) + C_(1) x^(n-1)`
`+ C_(2) x^(n-2) + ...+ C_(r) x^(n-r) + C_(r+1)x^(n-r-1)`
` + C_(r+2) x^(n-r-2) + ...+ C_(n))` ...(iii)
Now , coefficient of `x^(n-r)` on LHS of Eq .(iii) ` = ""^(2n)C_(n-r)`
` = (2n!)/((n-r)!(n+r)!)`
and coefficient of ` x^(n-r)` on RHS of Eq .(iii)
`= C_(0) C_(r) + C_(1) C_(r+1) + C_(2) C_(r+2) + ...+ C_(n-r) C_(n)`
But Eq.(iii) is an identity , therefore cefficient of ` x^(n-r)` in
RHS = coefficient of `x^(n-r)` in LHS
` rArr C_(0) C_(r) + C_(1) C_(r+1) + C_(2) C_(r+2) + ...+ C_(n-r) C_(n)`
` = (2n!)/((n-r)!(n+r)!)`
Aliter Given ,
` (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ...+ C_(r) x^(r) + C_(r+1) x^(r+1) + C_(r + 2)x^(r+2) + ...+ C_(n-r) x^(r) + ...+ C_(n) x^(n) `...(i) Now , `(1+(1)/(x))^(n) = C_(0) + (C_(1))/(x) + (C_(2))/(x^(2)) + ...+ (C_(r))/(x^(r))+ (C_(r +1))/(x^(r+1)) + (C_(r +2))/(x^(r+2))+ ...+ (C_(n-r))/(x^(n-r) ) +...+ (C_(n))/(x^(n))` ...(ii)
On multiplying Eqs.(i) and (ii) , we get
`((1 +x)^(2n))/(x^(n)) = (C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(r) x^(r) + C_(r+1) x^(n-r) + ... + C_(n) x^(n))`
`xx(C_(0) + (C_(1))/(x) + (C_(2))/(x^(2)) + ...+ (C_(r))/(x^(r)) + (C_(r +1))/(x^(r +1)) + (C_(r+2))/(x^(r +2)) + ...+ (C_(n-r))/(x^(n-r)) + ...+ (C_(n))/(x^(n)))`...(iii)
Now , coefficient of `(1)/(x^(r))` in RHS
`(C_(0) C_(r) + C_(1)C_(r+1) + C_(2) C_(r +2) + ...+ C_(n-r)C_(n))`
` therefore ` Coefficient of `(1)/(x^(r))` in LHS = Coefficient of ` x^(n-r) ` in
But Eq.(iii) is an identity , therefore ceofficients of `(1)/(x^(r))` in
` rArr C_(0) C_(r) + C_(1) C_(r +1) + C_(2) C_(r+2) + ...+ C_(n-r)C_(n)`
` = (2n!)/((n-r)(n+r)!)`
Corollary I For r = 0
` C_(0)^(2) + C_(1)x^(2) + C_(2) x^(2) + ...+ C_(n)^(2)= (2n!)/((n!)^(2))`
Corollary II for r = 1
`C_(0)C_(1) + C_(1) C_(2) + C_(2) C_(3) + ...+ C_(n-1) C_(n) =(2n!)/((n-1)!(n+1)!)` .
Corollary III For r = 2
`C_(0)C_(1) + C_(1) C_(3) + C_(2) C_(4) + ...+ C_(n-2) C_(n)= (2n!)/((n-2)!(n+2)!)` .
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

Prove that sum_(r = 1)^(n+1) (2^(r +1) C_(r - 1) )/(r (r + 1)) = (3^(n+2) - 2n - 5)/((n+1)(n+2))

Prove that .^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that .(r+1)*^n C_r-r*^n C_r+ ... +(-1)^r.^n C_r=(-1)^r.^(n-2)C_rdot

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Prove that C0Cr+C1 C(r+1)+ C2 C(r+2)+...............+c(n-r) Cn=((2n)!...

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |