Home
Class 12
MATHS
If ((2n+1),(0))+ ((2n+1),(3)) +((2n+1),(...

If `((2n+1),(0))+ ((2n+1),(3)) +((2n+1),(6))+ ...= 170, ` then n
equals

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \binom{2n+1}{0} + \binom{2n+1}{3} + \binom{2n+1}{6} + \ldots = 170 \), we will use the properties of binomial coefficients and the roots of unity. ### Step-by-Step Solution: 1. **Understanding the Series**: The series \( \binom{2n+1}{0} + \binom{2n+1}{3} + \binom{2n+1}{6} + \ldots \) represents the sum of binomial coefficients where the indices are multiples of 3. 2. **Using the Binomial Theorem**: According to the binomial theorem, we can express \( (1 + x)^{2n+1} \) as: \[ (1 + x)^{2n+1} = \sum_{k=0}^{2n+1} \binom{2n+1}{k} x^k \] 3. **Applying Roots of Unity**: To extract the coefficients where \( k \) is a multiple of 3, we can use the roots of unity. Let \( \omega = e^{2\pi i / 3} \) be a primitive cube root of unity. We evaluate: \[ S = (1 + 1)^{2n+1} + (1 + \omega)^{2n+1} + (1 + \omega^2)^{2n+1} \] This gives: \[ S = 2^{2n+1} + (1 + \omega)^{2n+1} + (1 + \omega^2)^{2n+1} \] 4. **Calculating \( (1 + \omega)^{2n+1} \) and \( (1 + \omega^2)^{2n+1} \)**: We know that \( 1 + \omega = e^{\pi i / 3} \) and \( 1 + \omega^2 = e^{-\pi i / 3} \). Therefore: \[ (1 + \omega)^{2n+1} = e^{(2n+1)\pi i / 3}, \quad (1 + \omega^2)^{2n+1} = e^{-(2n+1)\pi i / 3} \] 5. **Simplifying the Expression**: The sum \( S \) can be simplified as: \[ S = 2^{2n+1} + 2 \cos\left(\frac{(2n+1)\pi}{3}\right) \] The sum of the coefficients where \( k \) is a multiple of 3 is given by: \[ \frac{S}{3} = \frac{1}{3} \left( 2^{2n+1} + 2 \cos\left(\frac{(2n+1)\pi}{3}\right) \right) \] 6. **Setting Up the Equation**: We set this equal to 170: \[ \frac{1}{3} \left( 2^{2n+1} + 2 \cos\left(\frac{(2n+1)\pi}{3}\right) \right) = 170 \] This simplifies to: \[ 2^{2n+1} + 2 \cos\left(\frac{(2n+1)\pi}{3}\right) = 510 \] 7. **Finding \( n \)**: We can try different integer values for \( n \) to find a solution. - For \( n = 4 \): \[ 2^{2(4)+1} = 2^9 = 512 \] We also calculate \( \cos\left(\frac{9\pi}{3}\right) = \cos(3\pi) = -1 \): \[ 512 + 2(-1) = 512 - 2 = 510 \] This satisfies the equation. 8. **Conclusion**: Therefore, the value of \( n \) is: \[ \boxed{4} \]

To solve the equation \( \binom{2n+1}{0} + \binom{2n+1}{3} + \binom{2n+1}{6} + \ldots = 170 \), we will use the properties of binomial coefficients and the roots of unity. ### Step-by-Step Solution: 1. **Understanding the Series**: The series \( \binom{2n+1}{0} + \binom{2n+1}{3} + \binom{2n+1}{6} + \ldots \) represents the sum of binomial coefficients where the indices are multiples of 3. 2. **Using the Binomial Theorem**: ...
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

If n is a non zero rational number then show that 1 + n/2 + (n (n - 1))/(2.4) + (n(n-1)(n - 2))/(2.4.6) + ….. = 1 + n/3 + (n (n + 1))/(3.6) + (n (n + 1) (n + 2))/(3.6.9) + ….

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

1+n. (2n)/(1+n)+(n(n+1))/(1.2) ((2n)/(1+n))^2+…..

If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

If a 1 , a 2 , a 3 , , a 2 n + 1 are in A.P., then a 2 n + 1 − a 1 a 2 n + 1 + a 1 + a 2 n − a 2 a 2 n + a 2 + + a n + 2 − a n a n + 2 + a n is equal to a. n ( n + 1 ) 2 × a 2 − a 1 a n + 1 b. n ( n + 1 ) 2 c. ( n + 1 ) ( a 2 − a 1 ) d. none of these

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

(n+2)C_0(2^(n+1))-(n+1)C_1(2^(n))+(n)C_2(2^(n-1))-.... is equal to

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If ((2n+1),(0))+ ((2n+1),(3)) +((2n+1),(6))+ ...= 170, then n equal...

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |