Home
Class 12
MATHS
("^(m)C(0)+^(m)C(1)-^(m)C(2)-^(m)C(3))+(...

`("^(m)C_(0)+^(m)C_(1)-^(m)C_(2)-^(m)C_(3))+('^(m)C_(4)+^(m)C_(5)-^(m)C_(6)-^(m)C_(7))+..=0` if and only if for some positive integer `k`, `m=` (a) 4k (b) 4k+1 (c) 4k-1 (d) 4k+2

A

4k

B

`4k+1`

C

`4k-1`

D

`4k+2`

Text Solution

Verified by Experts

The correct Answer is:
c

If `theta in R and i = sqrt(-1), "then " (cos theta + i sin theta )^(n)`
`=^(m)C_(0) (cos theta)^(m) +^(m) C_(1)(costheta)^(m-1) (isin theta)`
`+ C_(2)(costheta)^(m-1) (isin theta)^(2)+...+""^(m)C_(m)(isintheta)^(m) `
`(cos m theta + isin m theta) = [""^(m)C_(0)(cos theta)^(m)-^(m)C_(2)(cos theta)^(m-2)cdot sin ^(2) theta +""^(m)C_(4)(costheta)^(m-4)sin^(4) theta - ...] + i [""^(m)C_(1)(cos theta)^(m-1) sin theta -^(m) C_(3) (cos theta)^(m-3)sin^(3) theta +..]`
[ using Demovire' s theromem]
Comparing real and imaginary parts, we geta `cos mtheta = ^(m)(cos theta)^(m) -^(m) C_(2) (cos theta)^(m-2)sin^(2)theta+^(m)C_(4) (cos theta )^(m-4) sin ^(4) theta - ......(i)`
`sin mtheta= ^(m) C_(1) (cos theta)^(m-1) cdot sintheta -^(m) C_(3)(cos theta)^(m-3 )cdot sin^(3) theta + ......(ii) `
On adding Eqs. (i) and (ii), we get
`cos m theta + sin m theta = ^(m)C_(0)(costheta)^(m) +
C_(1) (costheta)^(m-1)cdot sin theta -^(m) C_(2) (cos theta)^(m-2)sin ^(2) theta-^(m) C_(3)(cos)^(m-3)sin ^(3) theta`
`+^(m)C_(4)(costheta)^(m-4)sin^(4)theta + ...sin (mtheta + pi/4)`
`=(costheta)^(m){{:(""^(m)C_(0)+^(m)C_(1)tan theta-^(m)C_(2)tan^(2)theta -^(m)C_(3)tan^(3)),(+^(m)C_(4)tan^(4)theta + ^(m) C_(5)tan^(5) theta-...):}} `
Putting `theta=pi/4, sqrt(2)sin (((m+1)pi)/4)=1/2^(m//2)`
`{{:((""^(m)C_(0) +^(m) C_(1)-^(m) C_(2)-^(m) C_(3))+(""^(m)C_(4)+^(m) C_(5)-^(m) C_(6)-^(m) C_(7))),(+...+(""^(m)C_(m-3)+^(m) C_(m-2)-^(m) C_(m-1)-^(m) C_(m)) ):}}`
`because((""^(m)C_(0) +^(m) C_(1)-^(m) C_(2)-^(m) C_(3))+(""^(m)C_(4)+^(m) C_(5)-^(m) C_(6)-^(m) C_(7))`
`therefore sin frac((m+1)pi)(4)=0 rArr ((m+1)pi)/4 = k pi`
or `m=4k-1,AAkinI`
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

sum_(m=1)^(n)(sum_(k=1)^(m)(sum_(p=k)^(m)"^(n)C_(m)*^(m)C_(p)*^(p)C_(k)))=

""^(m)C_(r+1)+ sum_(k=m)^(n)""^(k)C_(r) is equal to :

The value of |(.^(10)C_(4).^(10)C_(5).^(11)C_(m)),(.^(11)C_(6).^(11)C_(7).^(12)C_(m+2)),(.^(12)C_(8).^(12)C_(9).^(13)C_(m+4))| is equal to zero when m is

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1

Find the radius of a circle, if its area is (a) 4\ pi\ c m^2 (b) 55. 44\ m^2 (c) 1. 54\ k m^2

Let m, in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) .

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

The freezing point of 0.05 m solution of glucose in water is (K1 = 1.86°C m^(-1) )

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. ("^(m)C(0)+^(m)C(1)-^(m)C(2)-^(m)C(3))+('^(m)C(4)+^(m)C(5)-^(m)C(6)-^(...

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |