Home
Class 12
MATHS
If a + b = k, when a, b gt o and S(k...

`If a + b = k, ` when `a, b gt o` and
`S(k, n) = sum _(r=0)^(n) r^(2) (""^(n) C_(r) ) a^(r) cdot b^(n-r) ` , then

A

`S(1,3) =3 (3a^(2)+ab) `

B

`S(2,4)=16(4a^(2)+ab)`

C

`S(3,5) = 25 (5a^(2) + ab) `

D

`S(4,6)=36(6a^(2)+ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression \( S(k, n) = \sum_{r=0}^{n} r^2 \binom{n}{r} a^r b^{n-r} \) under the condition \( a + b = k \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression: \[ S(k, n) = \sum_{r=0}^{n} r^2 \binom{n}{r} a^r b^{n-r} \] Here, \( \binom{n}{r} \) is the binomial coefficient, and \( a^r b^{n-r} \) represents the terms in the binomial expansion. 2. **Using the Identity for \( r^2 \)**: We can express \( r^2 \) in terms of binomial coefficients: \[ r^2 = r \cdot r = r \cdot (n \cdot \binom{n-1}{r-1}) = n \cdot \binom{n-1}{r-1} + r(n-1) \cdot \binom{n-2}{r-2} \] Thus, we can rewrite \( S(k, n) \): \[ S(k, n) = \sum_{r=0}^{n} \left( n \cdot \binom{n-1}{r-1} + r(n-1) \cdot \binom{n-2}{r-2} \right) a^r b^{n-r} \] 3. **Separating the Summation**: We can separate the summation into two parts: \[ S(k, n) = n \sum_{r=1}^{n} \binom{n-1}{r-1} a^r b^{n-r} + (n-1) \sum_{r=2}^{n} \binom{n-2}{r-2} a^r b^{n-r} \] 4. **Evaluating the First Summation**: The first summation can be simplified using the binomial theorem: \[ \sum_{r=1}^{n} \binom{n-1}{r-1} a^r b^{n-r} = a \sum_{r=0}^{n-1} \binom{n-1}{r} a^r b^{n-1-r} = a (a + b)^{n-1} = a k^{n-1} \] 5. **Evaluating the Second Summation**: The second summation can also be simplified: \[ (n-1) \sum_{r=2}^{n} \binom{n-2}{r-2} a^r b^{n-r} = (n-1) a^2 \sum_{r=0}^{n-2} \binom{n-2}{r} a^r b^{n-2-r} = (n-1) a^2 (a + b)^{n-2} = (n-1) a^2 k^{n-2} \] 6. **Combining the Results**: Now, we combine both parts: \[ S(k, n) = n a k^{n-1} + (n-1) a^2 k^{n-2} \] 7. **Final Expression**: The final expression for \( S(k, n) \) is: \[ S(k, n) = n a k^{n-1} + (n-1) a^2 k^{n-2} \]

To solve the given problem, we need to evaluate the expression \( S(k, n) = \sum_{r=0}^{n} r^2 \binom{n}{r} a^r b^{n-r} \) under the condition \( a + b = k \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression: \[ S(k, n) = \sum_{r=0}^{n} r^2 \binom{n}{r} a^r b^{n-r} ...
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If a + b = k, when a, b gt o and S(k, n) = sum (r=0)^(n) r^(2) (""...

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |