Home
Class 12
MATHS
The value of x, for which the ninth term...

The value of x, for which the ninth term in the
expansion of `{sqrt(10)/((sqrt(x))^(5log _(10)x ))+ x.x^(1/(2log_(10)x))}^(10)`
is 450 is equal to

A

10

B

`10^(2)`

C

`sqrt(10)`

D

`10^(-2//5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) for which the ninth term in the expansion of \[ \left( \frac{\sqrt{10}}{(\sqrt{x})^{5 \log_{10} x}} + x \cdot x^{\frac{1}{2 \log_{10} x}} \right)^{10} \] is equal to 450. ### Step 1: Simplify the expression Let \( \log_{10} x = \lambda \). Then, we can express \( x \) as: \[ x = 10^\lambda \] Now, we can rewrite the expression inside the parentheses: \[ \frac{\sqrt{10}}{(\sqrt{x})^{5 \log_{10} x}} = \frac{\sqrt{10}}{(\sqrt{10^\lambda})^{5 \lambda}} = \frac{\sqrt{10}}{(10^{\lambda/2})^{5 \lambda}} = \frac{\sqrt{10}}{10^{\frac{5 \lambda^2}{2}}} = \sqrt{10} \cdot 10^{-\frac{5 \lambda^2}{2}} \] And for the second term: \[ x \cdot x^{\frac{1}{2 \log_{10} x}} = 10^\lambda \cdot (10^\lambda)^{\frac{1}{2 \lambda}} = 10^\lambda \cdot 10^{\frac{1}{2}} = 10^{\lambda + \frac{1}{2}} \] Thus, the expression simplifies to: \[ \left( \sqrt{10} \cdot 10^{-\frac{5 \lambda^2}{2}} + 10^{\lambda + \frac{1}{2}} \right)^{10} \] ### Step 2: Identify the ninth term The general term in the binomial expansion of \( (a + b)^n \) is given by: \[ T_k = \binom{n}{k} a^{n-k} b^k \] For our case, \( n = 10 \), \( a = \sqrt{10} \cdot 10^{-\frac{5 \lambda^2}{2}} \), and \( b = 10^{\lambda + \frac{1}{2}} \). The ninth term corresponds to \( k = 8 \): \[ T_9 = \binom{10}{8} \left( \sqrt{10} \cdot 10^{-\frac{5 \lambda^2}{2}} \right}^{2} \left( 10^{\lambda + \frac{1}{2}} \right)^{8} \] Calculating \( T_9 \): \[ T_9 = \binom{10}{8} \cdot 10^{1} \cdot 10^{-5 \lambda^2} \cdot 10^{8\lambda + 4} = \binom{10}{8} \cdot 10^{1 - 5 \lambda^2 + 8\lambda + 4} \] ### Step 3: Set the equation We know that \( T_9 = 450 \): \[ \binom{10}{8} \cdot 10^{5 - 5 \lambda^2 + 8\lambda} = 450 \] Calculating \( \binom{10}{8} = 45 \): \[ 45 \cdot 10^{5 - 5 \lambda^2 + 8\lambda} = 450 \] Dividing both sides by 45: \[ 10^{5 - 5 \lambda^2 + 8\lambda} = 10 \] ### Step 4: Solve for \( \lambda \) This implies: \[ 5 - 5 \lambda^2 + 8\lambda = 1 \] Rearranging gives: \[ -5 \lambda^2 + 8\lambda + 4 = 0 \] Dividing through by -1: \[ 5 \lambda^2 - 8\lambda - 4 = 0 \] ### Step 5: Use the quadratic formula Using the quadratic formula \( \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ \lambda = \frac{8 \pm \sqrt{(-8)^2 - 4 \cdot 5 \cdot (-4)}}{2 \cdot 5} = \frac{8 \pm \sqrt{64 + 80}}{10} = \frac{8 \pm \sqrt{144}}{10} = \frac{8 \pm 12}{10} \] Calculating the roots: 1. \( \lambda = \frac{20}{10} = 2 \) 2. \( \lambda = \frac{-4}{10} = -\frac{2}{5} \) ### Step 6: Find \( x \) From \( \lambda = \log_{10} x \): 1. If \( \lambda = 2 \), then \( x = 10^2 = 100 \). 2. If \( \lambda = -\frac{2}{5} \), then \( x = 10^{-\frac{2}{5}} = 10^{-0.4} \). Thus, the values of \( x \) are \( 100 \) and \( 10^{-0.4} \). ### Final Answer The values of \( x \) are \( 100 \) and \( 10^{-0.4} \). ---

To solve the problem, we need to find the value of \( x \) for which the ninth term in the expansion of \[ \left( \frac{\sqrt{10}}{(\sqrt{x})^{5 \log_{10} x}} + x \cdot x^{\frac{1}{2 \log_{10} x}} \right)^{10} \] is equal to 450. ...
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

For what value of x is the ninth term in the expansion of (3^(log_3 sqrt(25^(x-1) +7)) + 3^(-1/8 log_3 (5^(x-1) +1)))^10 is equal to 180

Write the number of terms in the expansion of (2+sqrt(3)x)^(10)+(2-sqrt(3)x)^(10)dot

If the third term in the expansion of (x + x log_10 x)^5 is 10^6 then x is

x^(log_(10)((y)/(z))).y^(log_(10)((z)/(x))).z^(log_(10)((x)/(y))) is equal to :

Find the term independent of x in the expansion of (sqrt(x/3)+((sqrt3)/(2x^2)))^10

If x^(2"log"_(10)x) = 1000x , then x equals to

Find the terms independent of x in the expansion of (sqrt(x)+(1)/(3x^(2)))^(10)

The third term in the expansion of (x + x ^[log_10 x])^5 is 10^6 then x =

Find the term independent of x in the expansion of ( sqrt(x / 7) - (sqrt5)/(x^2) )^10

Find the domain of the function : f(x)=sqrt((log)_(10){((log)_(10)x)/(2(3-(log)_(10)x)}}

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of x, for which the ninth term in the expansion of {sqrt(1...

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |