Home
Class 12
MATHS
Let S = sum (r=1)^(30) (""^(30+r)C(r) (2...

Let `S = sum _(r=1)^(30) (""^(30+r)C_(r) (2r-1))/(""^(30)C_(r)(30+r)),K=sum_(r=0)^(30) (""^(30)C_(r))^(2)`
and `G=sum_(r=0)^(60) (-1)^(r)(""^(60)C_(r) )^(2)`
The value of K + G is

A

2 S - 2

B

2 S - 1

C

2 S + 1

D

2 S + 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions for \( S \), \( K \), and \( G \) and then find the value of \( K + G \). ### Step-by-Step Solution: 1. **Evaluate \( S \)**: \[ S = \sum_{r=1}^{30} \frac{{{30+r} \choose r} (2r-1)}}{{{30} \choose r} (30+r)} \] We can rewrite the summation starting from \( r=0 \) to \( r=30 \): \[ S = \sum_{r=0}^{30} \frac{{{30+r} \choose r} (2r-1)}}{{{30} \choose r} (30+r)} - \text{(the term for } r=0\text{)} \] The term for \( r=0 \) is zero since \( (2*0 - 1) = -1 \). 2. **Simplifying \( S \)**: We can factor out \( \frac{{{30+r} \choose r}}{{{30} \choose r}} \) and rewrite the summation: \[ S = \sum_{r=0}^{30} \frac{{{30+r} \choose r}}{{{30} \choose r}} - \sum_{r=0}^{30} \frac{{{30+r} \choose r} (r-1)}{{{30} \choose r} (30+r)} \] The first term simplifies to \( 2^{30} \) by the binomial theorem. 3. **Evaluate \( K \)**: \[ K = \sum_{r=0}^{30} \left( {30 \choose r} \right)^2 \] By the identity of binomial coefficients, this can be simplified using: \[ K = {60 \choose 30} \] 4. **Evaluate \( G \)**: \[ G = \sum_{r=0}^{60} (-1)^r \left( {60 \choose r} \right)^2 \] This can be evaluated using the identity: \[ G = {60 \choose 30} \] This is because the sum of squares of binomial coefficients with alternating signs gives the central binomial coefficient. 5. **Combine \( K \) and \( G \)**: Now we can find \( K + G \): \[ K + G = {60 \choose 30} + {60 \choose 30} = 2 {60 \choose 30} \] ### Final Result: The value of \( K + G \) is: \[ K + G = 2 {60 \choose 30} \]

To solve the problem, we need to evaluate the expressions for \( S \), \( K \), and \( G \) and then find the value of \( K + G \). ### Step-by-Step Solution: 1. **Evaluate \( S \)**: \[ S = \sum_{r=1}^{30} \frac{{{30+r} \choose r} (2r-1)}}{{{30} \choose r} (30+r)} \] ...
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Let S = sum _(r=1)^(30) (""^(30+r)C_(r) (2r-1))/(""^(30)C_(r)(30+r)),K=sum_(r=0)^(30) (""^(30)C_(r))^(2) and G=sum_(r=0)^(60) (-1)^(r)(""^(60)C_(r) )^(2) The value fo (G-S)is

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of Q + R is equal to

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum__(r=1)^(50) (""^(50)C_(r))^(2), R = sum_(r=0)^(100) (-1)^(r) (""^(100)C_(r))^(2) The value of P - Q is equal to

Let P =sum_(r=1)^(50)(""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of P - R is equal to

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

sum_(r=0)^(4) (-1)^(r )""^(16)C_(r) is divisible by :

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let S = sum (r=1)^(30) (""^(30+r)C(r) (2r-1))/(""^(30)C(r)(30+r)),K=su...

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |