Home
Class 12
MATHS
Prove that ""^(n)C(3)+""^(n)C(7) + ""...

Prove that
`""^(n)C_(3)+""^(n)C_(7) + ""^(n)C_(11) + ...= 1/2{2^(n-1) - 2^(n//2 )sin"" (npi)/(4)}`

Text Solution

Verified by Experts

In given series difference in lower suffices is 4.
i.e., ` 7 -3 =11 = …= 4 `
Now , ` (1)^(1//4) = (cos 0 + I sin 0 )^(1//4)`
`= (cos 2r pi + i sin 2r pi)^(1//4)`
`= cos ""(rpi)/(2) + i sin"" (rpi)/(4) "where r" = 0,1,2,3 `
Four roots of unity ` = 1,i,-1, 1,alpha, alpha^(2) , alpha^(3)` [say]
and ` (1 + x)^(n) = sum_(r=0)^(n) ""^(n)C_(r) x^(r)`
Putting ` x = 1, alpha, alpha^(2) , alpha^(3) , " we get " 2^(n) = sum_(r=0)^(n) ""^(n)C_(r)` ...(i)
` (1 + alpha)^(n) = sum_(r=0)^(n) ""^(n)C_(r) alpha^(r)` ...(ii)
` (1 + alpha ^(2))^(n) = sum_(r=0)^(n) ""^(n)C_(r) alpha^(2r) `...(iii)
`(1 + alpha^(2))^(n) - sum_(r=0)^(n) ""^(n)C_(r) alpha^(3r)` ...(iv)
On multiplying Eq.(i) by 1, Eq.(ii) By ` alpha ` , Eq.(iii) by ` alpha^(2)` and
Eq.(iv) by ` alpha^(3)` and adding , we get
` rArr 2^(n) + alpha (1 + alpha)^(n) + alpha^(2) (1 + alpha^(2))^(n) + alpha^(3) (1 + alpha^(3))^(n)`
` =sum_(r=0)^(n) ""^(n)C_(r) (1 + alpha ^(r+1) + alpha^(2r +2)+ alpha^(3r +3))` ...(v)
for r = 3,7,11,... RHS of Eq.(v)
` =""^(n)C_(r) (1 + alpha ^(4) + alpha^(8)+ alpha^(12))+""^(n)C_(7) (1 + alpha ^(4) + alpha^(16)+ alpha^(24))+""^(n)C_(11) (+ alpha ^(12) + alpha^(24)+ alpha^(36))+ ... `
` = 4(""^(n)C_(3) + ""^(n)C_(7) + ""^(n)C_(11) +...) " " [ because alpha^(4) = 1]`
and LHS of Eq.(v)
`= 2^(n) + ii (1 + i)^(n) + i^(2) (1 + i^(2))^(n) + i^(3) (1 + i^(3))^(n)`
` = 2^(n) + i (1+ i)^(n) + 0 - i (1 - i)^(n)`
` = 2^(n) + i {(1 + i)^(n) - (1 - i)^(n)}`
Since , `[(1 + i)^(n)= [sqrt(2)((1)/(sqrt(2))+ (i)/(sqrt(2)))]^(n)]`
` = 2^(n) + i2^(n//2)* sin"" (npi)/(4) = 2^(n//2) {cos""(pi)/(4) + i sin"" (pi)/(4)}^(n)`
` = 2^(n) - i2^(n//2)* sin"" (npi)/(4) = 2^(n//2) {cos""(pi)/(4) + i sin"" (pi)/(4)}`
Hence , ` 4 (""^(n)C_(3) + ""^(n)C_(7) + ""^(n)C_(11)+ ...) = 2 (2^(n-1) - 2^(n//2) sin" " (npi)/(4))`
` rArr ""^(n)C_(3) + ""^(n)C_(7) + ""^(n)C_(11) + ... = 1/2 (2^(n-1) - 2^(n//2) sin"" (npi)/(4))` .
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that: .^(2)C_(2)+^(3)C_(2)+^(4)C_(2)+…..+^(n+1)C_(2)=1/6n(n+1)(n+2)

Prove that: .^(2)C_(2)+^(3)C_(2)+^(4)C_(2)+…..+^(n+1)C_(2)=1/6n(n+1)(n+2)

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Prove that ""^(n)C(3)+""^(n)C(7) + ""^(n)C(11) + ...= 1/2{2^(n-1) -...

    Text Solution

    |

  2. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2))) x ne 0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |