Home
Class 12
MATHS
If (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r...

If ` (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(0))/(C_(1))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) ` is equal to

A

`(n^(n-1))/((n-1)!)`

B

`((n+1)^(n-1))/((n-1)!) `

C

`((n+1)^(n))/(n!)`

D

`((n+1)^(n+1))/(n!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ (1 + \frac{C_0}{C_1})(1 + \frac{C_2}{C_1})...(1 + \frac{C_n}{C_{n-1}}) \] where \(C_r\) represents the binomial coefficient \(\binom{n}{r}\). ### Step 1: Write the binomial coefficients The binomial coefficients are defined as: \[ C_r = \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Thus, we can express \(C_0\), \(C_1\), \(C_2\), ..., \(C_n\) as follows: - \(C_0 = \binom{n}{0} = 1\) - \(C_1 = \binom{n}{1} = n\) - \(C_2 = \binom{n}{2} = \frac{n(n-1)}{2}\) - ... - \(C_n = \binom{n}{n} = 1\) ### Step 2: Substitute the coefficients into the expression Now we substitute these coefficients into the expression: \[ (1 + \frac{C_0}{C_1})(1 + \frac{C_2}{C_1})...(1 + \frac{C_n}{C_{n-1}}) \] This becomes: \[ (1 + \frac{1}{n})(1 + \frac{\frac{n(n-1)}{2}}{n})...(1 + \frac{1}{\binom{n}{n-1}}) \] ### Step 3: Simplify each term We can simplify each term in the product: 1. The first term is \(1 + \frac{1}{n} = \frac{n+1}{n}\). 2. The second term is \(1 + \frac{(n-1)}{2} = \frac{n+1}{2}\). 3. Continuing this, we can express the general term as: \[ 1 + \frac{C_r}{C_{r-1}} = 1 + \frac{\binom{n}{r}}{\binom{n}{r-1}} = 1 + \frac{n-r+1}{r} = \frac{n+1}{r} \] ### Step 4: Write the product of all terms The product of all these terms from \(r = 1\) to \(n\) is: \[ \prod_{r=1}^{n} \left(1 + \frac{C_r}{C_{r-1}}\right) = \prod_{r=1}^{n} \frac{n+1}{r} = \frac{(n+1)^n}{n!} \] ### Conclusion Thus, the final result of the expression is: \[ \frac{(n+1)^n}{n!} \]
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|7 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .