Home
Class 12
MATHS
sum(r=0)^n(-1)^r^n Cr[1/(2^r)+3/(2^(2r))...

`sum_(r=0)^n(-1)^r^n C_r[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ u ptomt e r m s]= (2^(m n)-1)/(2^(m n)(2^n-1))`

A

-6

B

-3

C

3

D

Cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
d

`because sum_(r=0)^(n) (-1)^(r) ""^(n)C_(r)[((1)/(2))^(r) + ((3)/(4))^(r) + ((7)/(8))^(r) +..."upto m terms"]`
` = (1 - (1)/(2))^(n) + (1 - (3)/(4))^(n) + (1 - (7)/(8))^(n) +... "upto m terms" ]`
` (1)/(2^(n)) + (1)/(2^(2n)) + (1)/(2^(3n)) + ..." upto m terms" `
` = ((1)/(2^(n))[1-((1)/(2^(n)))^(m)])/((1- (1)/(2^(n))) )= ((1)/(2^(n)-1))(1-(1)/(2^(mn)))`
` therefore f (n) = (1)/(2^(n) -1)`
` therefore int_(-3)^(3) f(x^(3) " In x) * dt " (x^(3) ` in x)
`=int _(-3) ^(3) (1)/((2^(x^(3)"In x")-1))*(3x^(2) " In " x + x^(2))dx`
Since , In x cannot be defined for ` x lt 0 `
` therefore ` Above integral cannot be calculated .
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|14 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Deduce that: sum_(r=0)^n .^nC_r (-1)^r 1/((r+1)(r+2)) = 1/(n+2)

underset(r=0)overset(n)(sum)(-1)^(r).^(n)C_(r)[(1)/(2^(r))+(3^(r))/(2^(2r))+(7^(r))/(2^(3r))+(15^(r))/(2^(4r))+ . . .m" terms"]=

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

If sum_(r=0)^n((r^3+2r^2+3r+2)/(r+1)) ^nC_r=(2^4+2^3+2^2-2)/3

Prove that sum_(r=0)^n r(n-r)(^nC_ r)^2=n^2(^(2n-2)C_n)dot

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))