Home
Class 12
MATHS
Find the eccentric angle of a point on t...

Find the eccentric angle of a point on the ellipse `(x^2)/6+(y^2)/2=1` whose distance from the center of the ellipse is `sqrt(5)`

Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Example|4 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

The eccentric angle of a point on the ellipse x^(2)/6 + y^(2)/2 = 1 whose distance from the centre of the ellipse is 2, is

Eccentric angle of a point on the ellipse x^(2)/4+y^(2)/3=1 at a distance 2 units from the centre of ellipse is:

There are exactly two points on the ellipse (x^2)/(a^2)+(y^2)/(b^2) =1 whose distance from the centre of the ellipse are equal to sqrt((3a^2-b^2)/(3)) . Eccentricity of this ellipse is

There are exactly two points on the ellipse (x^2)/(a^2)+(y^2)/(b^2) =1 whose distance from the centre of the ellipse are equal to sqrt((3a^2-b^2)/(3)) . Eccentricity of this ellipse is

Find the eccentricity of the ellipse " "(x-3)^(2)/8+(y-4)^(2)/6=1 .

The eccentricity of the ellipse (x^(2))/(36)+(y^(2))/(25)=1 is

The eccentricity of the ellipse (x^(2))/(16)+(y^(2))/(25) =1 is

The locus of points whose polars with respect to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 are at a distance d from the centre of the ellipse, is

There are exactly two points on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 whose distances from its center are the same and are equal to (sqrt(a^2+2b^2))/2dot Then the eccentricity of the ellipse is 1/2 (b) 1/(sqrt(2)) (c) 1/3 (d) 1/(3sqrt(2))

The eccentricity of the ellipse (x^(2))/(49)+(y^(2))/(25)=1 is

ARIHANT MATHS ENGLISH-ELLIPSE-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Find the eccentric angle of a point on the ellipse (x^2)/6+(y^2)/2=...

    Text Solution

    |

  2. The minimum area of the triangle formed by the tangent to (x^2)/(a^2)+...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. An ellipse has O B as the semi-minor axis, Fa n dF ' as its foci...

    Text Solution

    |

  5. In an ellipse, the distances between its foci is 6 and minor axis is 8...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. A focus of an ellipse is at the origin. The directrix is the line x =4...

    Text Solution

    |

  8. The line passing through the extremity A of the major exis and extremi...

    Text Solution

    |

  9. The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at...

    Text Solution

    |

  10. A triangle A B C with fixed base B C , the vertex A moves such that co...

    Text Solution

    |

  11. The conic having parametric representation x=sqrt3(1-t^(2)/(1+t^(2))),...

    Text Solution

    |

  12. The ellipse x^2+""4y^2=""4 is inscribed in a rectangle aligned with...

    Text Solution

    |

  13. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  14. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  15. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  16. Find the equation of an ellipse hose axes lie along the coordinate ...

    Text Solution

    |

  17. The ellipse E1:(x^2)/9+(y^2)/4=1 is inscribed in a rectangle R whose s...

    Text Solution

    |

  18. Statement 1: An equation of a common tangent to the parabola y^2=16s...

    Text Solution

    |

  19. An ellipse is drawn by taking a diameter of the circle (x-1)^2+y^2=1 ...

    Text Solution

    |

  20. the equation of the circle passing through the foci of the ellip...

    Text Solution

    |

  21. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |