Home
Class 12
MATHS
Find the locus of the foot of the perpen...

Find the locus of the foot of the perpendicular drawn from the center upon any tangent to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1.`

Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Example|4 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

If the locus of the foot of the perpendicular drawn from centre upon any tangent to the ellipse (x^(2))/(40)+(y^(2))/(10)=1 is (x^(2)+y^(2))^(2)=ax^(2)+by^(2) , then (a-b) is equal to

The locus of the foot of the perpendicular from the foci an any tangent to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

Find the locus of the foot of perpendicular from the centre upon any normal to line hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 .

Find the locus of the feet of the perpendiculars drawn from the point (b, 0) on tangents to the circle x^(2) + y^(2) =a^(2)

Show that the locus of the foot of the perpendicular drawn from centre on any tangent to the ellipse b^2x^2+a^2y^2=a^2b^2 is the curve (x^2+y^2)^2=a^2x^2+b^2y^2

Prove that the product of the perpendiculars from the foci upon any tangent to the ellipse x^2/a^2+y^2/b^2=1 is b^2

Prove that the product of the perpendiculars from the foci upon any tangent to the ellipse x^2/a^2+y^2/b^2=1 is b^2

the locus of the foot of perpendicular drawn from the centre of the ellipse x^2+3y^2=6 on any point:

The locus of foot of the perpendiculars drawn from the vertex on a variable tangent to the parabola y^2 = 4ax is

The locus of the foot of the perpendicular from the centre of the ellipse x^2 +3y^2 =3 on any tangent to it is

ARIHANT MATHS ENGLISH-ELLIPSE-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Find the locus of the foot of the perpendicular drawn from the cent...

    Text Solution

    |

  2. The minimum area of the triangle formed by the tangent to (x^2)/(a^2)+...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. An ellipse has O B as the semi-minor axis, Fa n dF ' as its foci...

    Text Solution

    |

  5. In an ellipse, the distances between its foci is 6 and minor axis is 8...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. A focus of an ellipse is at the origin. The directrix is the line x =4...

    Text Solution

    |

  8. The line passing through the extremity A of the major exis and extremi...

    Text Solution

    |

  9. The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at...

    Text Solution

    |

  10. A triangle A B C with fixed base B C , the vertex A moves such that co...

    Text Solution

    |

  11. The conic having parametric representation x=sqrt3(1-t^(2)/(1+t^(2))),...

    Text Solution

    |

  12. The ellipse x^2+""4y^2=""4 is inscribed in a rectangle aligned with...

    Text Solution

    |

  13. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  14. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  15. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  16. Find the equation of an ellipse hose axes lie along the coordinate ...

    Text Solution

    |

  17. The ellipse E1:(x^2)/9+(y^2)/4=1 is inscribed in a rectangle R whose s...

    Text Solution

    |

  18. Statement 1: An equation of a common tangent to the parabola y^2=16s...

    Text Solution

    |

  19. An ellipse is drawn by taking a diameter of the circle (x-1)^2+y^2=1 ...

    Text Solution

    |

  20. the equation of the circle passing through the foci of the ellip...

    Text Solution

    |

  21. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |