Home
Class 12
MATHS
Extremities of the latus rectum of the e...

Extremities of the latus rectum of the ellipses `(x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 (a gt b)` having a major axis 2a lies on

A

`x^(2)=a(a-y)`

B

`x=a(a+y)

C

`y^(2)=a(a+x)`

D

y^(2)=a(a-x)`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Example|4 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

Extremities of the latera recta of the ellipses (x^2)/(a^2)+(y^2)/(b^2)=1(a > b) having a given major axis 2a lies on

If e' is the eccentricity of the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 (a gt b) , then

Find the length of latus rectum of the ellipse (x^(2))/(25) + (y^(2))/(36) = 1 .

Find the length of the latus rectum of the ellipse 9x^(2)+16y^(2)=144

If the normal at one end of the latus rectum of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 passes through one end of the minor axis, then prove that eccentricity is constant.

If the normal at one end of the latus rectum of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 passes through one end of the monor axis, then prove that eccentricity is constant.

The length of latus rectum AB of ellipse (x^(2))/4+(y^(2))/3=1 is :

Find the eccentric angles of the extremities of the latus recta of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1

If the latus rectum of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=1 is (9)/(2) , then its eccentricity, is

The locus of extremities of the latus rectum of the family of ellipse b^2x^2+a^2y^2=a^2b^2 is

ARIHANT MATHS ENGLISH-ELLIPSE-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Extremities of the latus rectum of the ellipses (x^(2))/(a^(2))+(y^(2)...

    Text Solution

    |

  2. The minimum area of the triangle formed by the tangent to (x^2)/(a^2)+...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. An ellipse has O B as the semi-minor axis, Fa n dF ' as its foci...

    Text Solution

    |

  5. In an ellipse, the distances between its foci is 6 and minor axis is 8...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. A focus of an ellipse is at the origin. The directrix is the line x =4...

    Text Solution

    |

  8. The line passing through the extremity A of the major exis and extremi...

    Text Solution

    |

  9. The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at...

    Text Solution

    |

  10. A triangle A B C with fixed base B C , the vertex A moves such that co...

    Text Solution

    |

  11. The conic having parametric representation x=sqrt3(1-t^(2)/(1+t^(2))),...

    Text Solution

    |

  12. The ellipse x^2+""4y^2=""4 is inscribed in a rectangle aligned with...

    Text Solution

    |

  13. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  14. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  15. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  16. Find the equation of an ellipse hose axes lie along the coordinate ...

    Text Solution

    |

  17. The ellipse E1:(x^2)/9+(y^2)/4=1 is inscribed in a rectangle R whose s...

    Text Solution

    |

  18. Statement 1: An equation of a common tangent to the parabola y^2=16s...

    Text Solution

    |

  19. An ellipse is drawn by taking a diameter of the circle (x-1)^2+y^2=1 ...

    Text Solution

    |

  20. the equation of the circle passing through the foci of the ellip...

    Text Solution

    |

  21. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |