Home
Class 12
MATHS
If the tangent drawn at point (t^2,2t) o...

If the tangent drawn at point `(t^2,2t)` on the parabola `y^2=4x` is the same as the normal drawn at point `(sqrt(5)costheta,2sintheta)` on the ellipse `4x^2+5y^2=20,` then `theta=cos^(-1)(-1/(sqrt(5)))` (b) `theta=cos^(-1)(1/(sqrt(5)))` `t=-2/(sqrt(5))` (d) `t=-1/(sqrt(5))`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|14 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If veca=(3,1) and vecb=(1,2) represent the sides of a parallelogram then the angle theta between the diagonals of the paralelogram is given by (A) theta=cos^-1(1/sqrt(5)) (B) theta=cos^-1(2/sqrt(5)) (C) theta=cos^-1 (1/(2sqrt(5))) (D) theta = pi/2

The sum of all the solution(s) of the equation sin^(-1)2x=cos^(-1)x is 0 (2) 2/(sqrt(5)) (3) 1/(sqrt(5)) (4) (-1)/(sqrt(5))

If sin2theta=cos3theta"and"theta is an acute angle, then sintheta equal (a) (sqrt(5)-1)/4 (b) -((sqrt(5)-1)/4) (c) (sqrt(5)+1)/4 (d) (-sqrt(5)-1)/4

The eccentricity of the ellipse 4x^2+9y^2=36 is a. 1/(2sqrt(3)) b. 1/(sqrt(3)) c. (sqrt(5))/3 d. (sqrt(5))/6

The eccentricity of the ellipse 4x^2+9y^2=36 is a. 1/(2sqrt(3)) b. 1/(sqrt(3)) c. (sqrt(5))/3 d. (sqrt(5))/6

If sin^(-1)x+cot^(-1)(1/2)=pi/2,\ t h e n\ x is 0 b. 1/(sqrt(5)) c. 2/(sqrt(5)) d. (sqrt(3))/2