Home
Class 12
MATHS
The tangent and normal at any point P of...

The tangent and normal at any point P of an ellipse `x^(2)/a^(2)+y^(2)/b^(2)=1` cut its major axis in point Q and R respectively. If QR=a prove that the eccentric angle of the point P is given by `e^(2)cos^(2)phi+cosphi-1=0`

Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|14 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

The tangent at point P on the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 cuts the minor axis in Q and PR is drawn perpendicular to the minor axis. If C is the centre of the ellipse, then CQ*CR =

If normal at any point P to ellipse (x^2)/(a^2) + (y^2)/(b^2) = 1(a > b) meet the x & y axes at A and B respectively. Such that (PA)/(PB) = 3/4 , then eccentricity of the ellipse is:

If normal at any poin P on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (agtbgt0) meets the major and minor axes at Q and R, respectively, so that 3PQ=2PR, then find the eccentricity of ellipse

If the normal at any point P on ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 meets the auxiliary circle at Q and R such that /_QOR = 90^(@) where O is centre of ellipse, then

If the normal at any point P on the ellipse cuts the major and minor axes in G and g respectively and C be the centre of the ellipse, then

The tangent and normal to the ellipse x^2+4y^2=4 at a point P(theta) on it meets the major axis in Q and R respectively. If 0 < theta < pi/2 and QR=2 then show that theta=

If p(theta) is a point on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (agtb) then find its coresponding point

The tangent and normal to the ellipse x^(2) + 4y^(2) = 4 at a point P(0) on it meets the major axis in Q and R respectively. If 0lt (pi)/(2) and QR = 2 then show that theta = cos^(-1)(2/3) .

The tangent and normal at the point P(4,4) to the parabola, y^(2) = 4x intersect the x-axis at the points Q and R, respectively. Then the circumcentre of the DeltaPQR is (a) (2,0) (b) (2,1) (c) (1,0) (d) (1,2)

If the normal at point P (theta) on the ellipse x^2/a^2 + y^2/b^2 = 1 meets the axes of x and y at M and N respectively, show that PM : PN = b^2 : a^2 .