Home
Class 12
MATHS
A tangent to the ellipse x^2+4y^2=4 meet...

A tangent to the ellipse `x^2+4y^2=4` meets the ellipse `x^2+2y^2=6` at P and Q. The angle between the tangents at P and Q of the ellipse `x^2+2y^2=6` is

Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

A tangent to the ellipse x^2+4y^2=4 meets the ellipse x^2+2y^2=6 at P&Q.

A tangent to the ellipse x^2+4y^2=4 meets the ellipse x^2+2y^2=6 at P&Q. The angle between the tangents at P and Q of the ellipse x 2 +2y 2 =6 is

The eccentricity of the ellipse x^(2) + 2y^(2) =6 is

Find the angle between the pair of tangents from the point (1,2) to the ellipse 3x^2+2y^2=5.

If 3x+4y=12 intersect the ellipse x^2/25+y^2/16=1 at P and Q , then point of intersection of tangents at P and Q.

The line 2x+y=3 cuts the ellipse 4x^(2)+y^(2)=5 at points P and Q. If theta is the angle between the normals at P and Q, then tantheta is equal to

The line 2x+y=3 intersects the ellipse 4x^(2)+y^(2)=5 at two points. The point of intersection of the tangents to the ellipse at these point is

A variable tangent to the circle x^(2)+y^(2)=1 intersects the ellipse (x^(2))/(4)+(y^(2))/(2)=1 at point P and Q. The lous of the point of the intersection of tangents to the ellipse at P and Q is another ellipse. Then find its eccentricity.

Tangents are drawn from a point on the ellipse x^2/a^2 + y^2/b^2 = 1 on the circle x^2 + y^2 = r^2 . Prove that the chord of contact are tangents of the ellipse a^2 x^2 + b^2 y^2 = r^4 .

A tangent to the circle x^(2)+y^(2)=1 through the point (0, 5) cuts the circle x^(2)+y^(2)=4 at P and Q. If the tangents to the circle x^(2)+y^(2)=4 at P and Q meet at R, then the coordinates of R are