Home
Class 12
MATHS
If the line lx+my+n=0 touches the hyperb...

If the line `lx+my+n=0` touches the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`. Then

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Example|7 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Questions|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

The pole of the line lx+my+n=0 with respect to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

If the l x+ my=1 is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then shown that (a^(2))/(l^(2))-(b^(2))/(m^(2))=(a^(2)+b^(2))^(2)

Show that the line lx + my = 1 will touch the ellipse (x ^(2))/( a ^(2)) + (y ^(2))/(b ^(2)) =1 if a ^(2) l ^(2) + b ^(2)m ^(2) = 1.

If the line Ix + my +n=0 cuts the ellpse (x^(2))/(a^(2))+(Y^(2))/(b^(2))=1 in point eccentric angles differ by pi//2 , then

If the straight line lx+my+n=0 be a normal to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then by the application of calculus, prove that (a^2)/(l^2)-(b^2)/(m^2)=((a^2+b^2)^2)/(n^2) .

STATEMENT-1 : The line y = (b)/(a)x will not meet the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2)) =1, (a gt b gt 0) . and STATEMENT-2 : The line y = (b)/(a)x is an asymptote to the hyperbola.

Find the condition that line lx + my - n = 0 will be a normal to the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 .

If the lines lx+my+n=0 passes through the extremities of a pair of conjugate diameters of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , show that a^(2)l^(2)-b^(2)m^(2)=0 .

The line y = 4x + c touches the hyperbola x^(2) - y^(2) = 1 if