Home
Class 12
MATHS
If SY and S'Y' be drawn perpendiculars f...

If SY and S'Y' be drawn perpendiculars from foci to any tangent to a hyperbola. Prove that y and Y' lie on the auxiliary circle and that product of these perpendicular is constant.

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Questions|3 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Prove that perpendicular drawn from focus upon any tangent of a parabola lies on the tangent at the vertex

The locus of the foot of perpendicular from my focus of a hyperbola upon any tangent to the hyperbola is the auxiliary circle of the hyperbola. Consider the foci of a hyperbola as (-3, -2) and (5,6) and the foot of perpendicular from the focus (5, 6) upon a tangent to the hyperbola as (2, 5). The point of contact of the tangent with the hyperbola is

The locus of the foot of perpendicular from my focus of a hyperbola upon any tangent to the hyperbola is the auxiliary circle of the hyperbola. Consider the foci of a hyperbola as (-3, -2) and (5,6) and the foot of perpendicular from the focus (5, 6) upon a tangent to the hyperbola as (2, 5). The directrix of the hyperbola corresponding to the focus (5, 6) is

The locus of the foot of perpendicular from my focus of a hyperbola upon any tangent to the hyperbola is the auxiliary circle of the hyperbola. Consider the foci of a hyperbola as (-3, -2) and (5,6) and the foot of perpendicular from the focus (5, 6) upon a tangent to the hyperbola as (2, 5). The conjugate axis of the hyperbola is

the product of the perpendicular distance from any points on a hyperbola to its asymptotes is

the foot of perpendicular from a focus on any tangent to the ellipse x^2/4^2 + y^2/3^2 = 1 lies on the circle x^2 + y^2 = 25 . Statement 2: The locus of foot of perpendicular from focus to any tangent to an ellipse is its auxiliary circle.

Statement 1 : For the ellipse (x^2)/5+(y^2)/3=1 , the product of the perpendiculars drawn from the foci on any tangent is 3. Statement 2 : For the ellipse (x^2)/5+(y^2)/3=1 , the foot of the perpendiculars drawn from the foci on any tangent lies on the circle x^2+y^2=5 which is an auxiliary circle of the ellipse.

Prove that the product of the perpendicular from the foci on any tangent to an ellipse is equal to the square of the semi-minor axis.

Locus of the feet of the perpendiculars drawn from either foci on a variable tangent to the hyperbola 16y^2 -9 x^2 = 1 is

Locus of the feet of the perpendiculars drawn from either foci on a variable tangent to the hyperbola 16y^2 -9 x^2 = 1 is