Home
Class 12
MATHS
The line l x+m y+n=0 is a normal to t...

The line `l x+m y+n=0` is a normal to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` . then prove that `(a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)`

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Example|7 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Questions|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

If the l x+ my=1 is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then shown that (a^(2))/(l^(2))-(b^(2))/(m^(2))=(a^(2)+b^(2))^(2)

If straight line lx + my + n=0 is a tangent of the ellipse x^2/a^2+y^2/b^2 = 1, then prove that a^2 l^2+ b^2 m^2 = n^2.

If the straight line lx+my+n=0 be a normal to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then by the application of calculus, prove that (a^2)/(l^2)-(b^2)/(m^2)=((a^2+b^2)^2)/(n^2) .

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

For the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 and (x^(2))/(b^(2))+(y^(2))/(a^(2)) =1

If the straight line lx + my = 1 is a normal to ellipse a^2/l^2 + b^2/m^2 is

The line lx + my+n=0 will be a normal to the hyperbola b^2x^2-a^2y^2=a^2b^2 if

The line x = at^(2) meets the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 in the real points iff

Prove that the locus of the middle points of normal chords of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 is the curve (x^(2)/a^(2)+y^(2)/b^(2))(a^(6)/x^(2)+b^(6)/y^(2))=(A^(2)-B^(2))^(2)