Home
Class 12
MATHS
If the lines lx+my+n=0 passes through th...

If the lines `lx+my+n=0` passes through the extremities of a pair of conjugate diameters of the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`, show that `a^(2)l^(2)-b^(2)m^(2)=0`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Questions|3 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

the equation of a diameter conjugate to a diameter y=(b)/(a)x of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is

The pole of the line lx+my+n=0 with respect to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

If the l x+ my=1 is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then shown that (a^(2))/(l^(2))-(b^(2))/(m^(2))=(a^(2)+b^(2))^(2)

If the pair of straight lines Ax^(2)+2Hxy+By^(2)=0 be conjugate diameters of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then prove that Aa^(2)=Bb^(2).

Show that the tangents at the ends of conjugate diameters of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 intersect on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=2 .

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

The equation of a hyperbola conjugate to the hyperbola x^(2)+3xy+2y^(2)+2x+3y=0 is

If the normal at an end of latus rectum of the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 passes through the point (0, 2b) then

Show that the line lx + my = 1 will touch the ellipse (x ^(2))/( a ^(2)) + (y ^(2))/(b ^(2)) =1 if a ^(2) l ^(2) + b ^(2)m ^(2) = 1.