Home
Class 12
MATHS
If the normal to the rectangular hyperbo...

If the normal to the rectangular hyperbola `xy = c^2` at the point `'t'` meets the curve again at `t_1` then `t^3t_1,` has the value equal to

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Example|7 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Questions|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The normal to the rectangular hyperbola xy = 4 at the point t_1 meets the curve again at the point t_2 Then

If the normal to the rectangular hyperbola xy = 4 at the point (2t, (2)/(t_(1))) meets the curve again at (2t_(2), (2)/(t_(2))) , then

If the normal to the rectangular hyperbola x y=c^2 at the point (c t ,c//t) meets the curve again at (c t^(prime),c//t '),t h e n t^3t^(prime)=1 (B) t^3t^(prime)=-1 (C) t.t^(prime)=1 (D) t.t^(prime)=-1

The normal to curve xy=4 at the point (1, 4) meets curve again at :

If the normal to the given hyperbola at the point (c t , c/t) meets the curve again at (c t^(prime), c/t^(prime)), then (A) t^3t^(prime)=1 (B) t^3t^(prime)=-1 (C) t t^(prime)=1 (D) t t^(prime)=-1

If the normals at (x_(i),y_(i)) i=1,2,3,4 to the rectangular hyperbola xy=2 meet at the point (3,4) then

If the normal at point 't' of the curve xy = c^(2) meets the curve again at point 't'_(1) , then prove that t^(3)* t_(1) =- 1 .

If the normal to the parabola y^2=4a x at point t_1 cuts the parabola again at point t_2 , then prove that (t_2)^2geq8.

If the normal to the parabola y^2=4a x at point t_1 cuts the parabola again at point t_2 , then prove that t2 2geq8.

Normals drawn to the hyperbola xy=2 at the point P(t_1) meets the hyperbola again at Q(t_2) , then minimum distance between the point P and Q is