Home
Class 12
MATHS
For the hyperbola (x^(2))/(a^(2))+(y^(2)...

For the hyperbola `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`, the normal at point P meets the transverse axis AA' in G and the connjugate axis BB' in g and CF be perpendicular to the normal from the centre. Q. Locus of middle-point of G and g is a hyperbola of eccentricity

A

`(1)/(sqrt(e^(2)-1))`

B

`(e)/(sqrt(e^(2)-1))`

C

`2(sqrt(e^(2)-1))`

D

`(e)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Example|7 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Questions|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

For the hyperbola (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , the normal at point P meets the transverse axis AA' in G and the connjugate axis BB' in g and CF be perpendicular to the normal from the centre. Q. The value PF*Pg is equal to

For the hyperbola (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , the normal at point P meets the transverse axis AA' in G and the connjugate axis BB' in g and CF be perpendicular to the normal from the centre. Q. The value (PF*PG)/((CB^(2))) is equal to

The number of normals to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 from an external point, is

The normal at P to a hyperbola of eccentricity e , intersects its transverse and conjugate axes at L and M respectively. Show that the locus of the middle point of LM is a hyperbola of eccentricity e/sqrt(e^2-1)

If the normal at a point P to the hyperbola meets the transverse axis at G, and the value of SG/SP is 6, then the eccentricity of the hyperbola is (where S is focus of the hyperbola)

The tangent at P on the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2))=1 meets one of the asymptote in Q. Then the locus of the mid-point of PQ is

If C is centre of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 and the normal at an end of a latusrectum cuts the major axis in G, then CG =

If the normal at any point P on the ellipse cuts the major and minor axes in G and g respectively and C be the centre of the ellipse, then

If the normal at P(asectheta,btantheta) to the hyperbola x^2/a^2-y^2/b^2=1 meets the transverse axis in G then minimum length of PG is

The normal at P to a hyperbola of eccentricity (3)/(2sqrt(2)) intersects the transverse and conjugate axes at M and N respectively. The locus of mid-point of MN is a hyperbola, then its eccentricity.