Home
Class 12
MATHS
If e and e' are the eccentricities of th...

If e and e' are the eccentricities of the ellipse `5x^(2) + 9 y^(2) = 45 ` and the hyperbola `5x^(2) - 4y^(2) = 45 respectively , then ee' is equal to

A

`-1`

B

`1`

C

`-4`

D

`9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the eccentricities of the given ellipse and hyperbola, and then calculate the product of these eccentricities. ### Step 1: Find the eccentricity of the ellipse The equation of the ellipse is given as: \[ 5x^2 + 9y^2 = 45 \] **Convert to standard form:** 1. Divide the entire equation by 45: \[ \frac{5x^2}{45} + \frac{9y^2}{45} = 1 \] This simplifies to: \[ \frac{x^2}{9} + \frac{y^2}{5} = 1 \] **Identify \(a^2\) and \(b^2\):** - Here, \(a^2 = 9\) and \(b^2 = 5\). **Calculate the eccentricity \(e\):** The formula for the eccentricity of an ellipse is: \[ e = \sqrt{1 - \frac{b^2}{a^2}} \] Substituting the values: \[ e = \sqrt{1 - \frac{5}{9}} = \sqrt{\frac{4}{9}} = \frac{2}{3} \] ### Step 2: Find the eccentricity of the hyperbola The equation of the hyperbola is given as: \[ 5x^2 - 4y^2 = 45 \] **Convert to standard form:** 1. Divide the entire equation by 45: \[ \frac{5x^2}{45} - \frac{4y^2}{45} = 1 \] This simplifies to: \[ \frac{x^2}{9} - \frac{y^2}{\frac{45}{4}} = 1 \] **Identify \(a^2\) and \(b^2\):** - Here, \(a^2 = 9\) and \(b^2 = \frac{45}{4}\). **Calculate the eccentricity \(e'\):** The formula for the eccentricity of a hyperbola is: \[ e' = \sqrt{1 + \frac{b^2}{a^2}} \] Substituting the values: \[ e' = \sqrt{1 + \frac{\frac{45}{4}}{9}} = \sqrt{1 + \frac{5}{4}} = \sqrt{\frac{9}{4}} = \frac{3}{2} \] ### Step 3: Calculate the product of the eccentricities Now we need to find the product \(ee'\): \[ ee' = \left(\frac{2}{3}\right) \left(\frac{3}{2}\right) = \frac{2 \cdot 3}{3 \cdot 2} = 1 \] ### Final Answer: The product of the eccentricities \(ee'\) is equal to \(1\). ---
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|17 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Questions|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The eccentricity of the ellipse 12x^(2)+7y^(2)=84 is equal to

The eccentricity of the ellipse (x^2)/25+(y^2)/9=1 is ,

The eccentricity of the ellipse x^(2)+4y^(2)+8y-2x+1=0 , is

If e_(1) and e_(2) are the eccentricities of the ellipse (x^(2))/(18)+(y^(2))/(4)=1 and the hyperbola (x^(2))/(9)-(y^(2))/(4)=1 respectively and (e_(1), e_(2)) is a point on the ellipse 15x^(2)+3y^(2)=k , then the value of k is equal to

The eccentricity of the ellipse 9x^2+5y^2-30 y=0 is

Find the eccentricity of the ellipse, 4x^(2)+9y^(2)-8x-36y+4=0 .

The eccentricity of the ellipse (x -3)^2 + (y-4)^2=y^2/9

Write the eccentricity of the ellipse 9x^2+5y^2-18 x-2y-16=0.

The eccentricity of the hyperbola x^(2)-y^(2)=9 is

The eccentricity of the hyperbola 9x^(2) -16y^(2) =144 is

ARIHANT MATHS ENGLISH-HYPERBOLA-Exercise For Session 1
  1. The eccentricity of the conic represented by x^2-y^2-4x+4y+16=0 is 1 (...

    Text Solution

    |

  2. If e(1) and e(2) represent the eccentricity of the curves 6x^(2) - 9y^...

    Text Solution

    |

  3. The transverse axis of a hyperbola is of length 2a and a vertex divide...

    Text Solution

    |

  4. The eccentricity of the hyperbola whose latus-rectum is 8 and length o...

    Text Solution

    |

  5. The straight line x+y=sqrt2P will touch the hyperbola 4x^2-9y^2=36 i...

    Text Solution

    |

  6. The equation of the tangent parallel to y-x+5=0" drawan to "(x^(2))/(3...

    Text Solution

    |

  7. If e and e' are the eccentricities of the hyperbola (x^(2))/(a^(2))-(y...

    Text Solution

    |

  8. If e and e' are the eccentricities of the ellipse 5x^(2) + 9 y^(2) = ...

    Text Solution

    |

  9. The equation (x^(2))/(10-lambda)+(y^(2))/(6-lambda)=1 represents

    Text Solution

    |

  10. Find the centre, eccentricity, foci and directrices of the hyperbola :...

    Text Solution

    |

  11. For hyperbola x^2sec^2alpha-ycos e c^2alpha=1, which of the following ...

    Text Solution

    |

  12. If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola ...

    Text Solution

    |

  13. Find the equation of the hyperbola whose foaci are (0, 5) and (-2, 5) ...

    Text Solution

    |

  14. Prove that the straight lines x/a-y/b =m and x/a+y/b=1/m, where a and ...

    Text Solution

    |

  15. Find the centre, eccentricity and length of axes of the hyperbola 3x^...

    Text Solution

    |

  16. The eccentricity of the conjugate hyperbola of the hyperbola x^2-3y^2=...

    Text Solution

    |

  17. If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45, then l...

    Text Solution

    |

  18. Find the equation of tangents to the curve 4x^2-9y^2=1 which are paral...

    Text Solution

    |