Home
Class 12
MATHS
Chords of the hyperbola x^(2)-y^(2)=a^(2...

Chords of the hyperbola `x^(2)-y^(2)=a^(2)` touch the parabola `y^(2)=4ax`. Prove that the locus of their middle-points is the curve `y^(2)(x-a)=x^(3)`.

A

`y^(2)(x+a)=x^(3)`

B

`y^(2)(x-a)=x^(3)`

C

`y^(2)(x+2a)=3x^(3)`

D

`y^(2)(x-2a)=2x^(3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|14 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|17 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Chords of the hyperbola, x^2-y^2 = a^2 touch the parabola, y^2 = 4ax . Prove that the locus of their middlepoints is the curve, y^2 (x-a)=x^3 .

Chords of the circle x^(2)+y^(2)=4 , touch the hyperbola (x^(2))/(4)-(y^(2))/(16)=1 .The locus of their middle-points is the curve (x^(2)+y^(2))^(2)=lambdax^(2)-16y^(2) , then the value of lambda is

If the circle x^(2)+y^(2)+2ax=0, a in R touches the parabola y^(2)=4x , them

From the points on the circle x^(2)+y^(2)=a^(2) , tangents are drawn to the hyperbola x^(2)-y^(2)=a^(2) : prove that the locus of the middle-points (x^(2)-y^(2))^(2)=a^(2)(x^(2)+y^(2))

A tangent to the parabola y^2 + 4bx = 0 meets the parabola y^2 = 4ax in P and Q. The locus of the middle points of PQ is:

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

The point of contact of 2x-y+2 =0 to the parabola y^(2)=4ax is

The locus of the mid-point of the chords of the hyperbola x^(2)-y^(2)=4 , that touches the parabola y^(2)=8x is

If x-2y-a=0 is a chord of the parabola y^(2)=4ax , then its langth, is

Tangents are drawn from the points on a tangent of the hyperbola x^2-y^2=a^2 to the parabola y^2=4a xdot If all the chords of contact pass through a fixed point Q , prove that the locus of the point Q for different tangents on the hyperbola is an ellipse.

ARIHANT MATHS ENGLISH-HYPERBOLA-Exercise (Single Option Correct Type Questions)
  1. Let A=(-3, 4) and B=(2, -1) be two fixed points. A point C moves such ...

    Text Solution

    |

  2. A point P is taken on the right half of the hyperbola (x^(2))/(a^(2))-...

    Text Solution

    |

  3. If the angle between the asymptotes of hyperbola (x^2)/(a^2)-(y^2)/(b^...

    Text Solution

    |

  4. If alpha+beta=3pi , then the chord joining the points alpha and beta f...

    Text Solution

    |

  5. If x^2/a^2+y^2/b^2=1(a>b) and x^2-y^2=c^2 cut at right angles, then:

    Text Solution

    |

  6. Chords of the hyperbola x^(2)-y^(2)=a^(2) touch the parabola y^(2)=4ax...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The equation of the line passing through the centre of a rectangular h...

    Text Solution

    |

  9. The condition that a straight line with slope m will be normal to para...

    Text Solution

    |

  10. Find the locus of the midpoints of chords of hyperbola 3x^(2)-2y^(2)+4...

    Text Solution

    |

  11. The co-ordinates of the centre of the hyperbola, x^2+3x y+3y^2+2x+3y+2...

    Text Solution

    |

  12. Let F1,F2 are the foci of the hyperbola x^2/16-y^2/9=1 and F3,F4 are t...

    Text Solution

    |

  13. Locus of the point of intersection of the tangents at the points with ...

    Text Solution

    |

  14. Latusrectum of the conic satisfying the differential equation xdy+ydx=...

    Text Solution

    |

  15. The point of intersection of the curve whose parametrix equations are ...

    Text Solution

    |

  16. If the tangent and normal to a rectangular hyperbola cut off intercept...

    Text Solution

    |

  17. The focus of rectangular hyperbola (x-a)*(y-b)=c^2 is

    Text Solution

    |

  18. The equation of a hyperbola conjugate to the hyperbola x^(2)+3xy+2y^(2...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let C be a curve which is the locus of the point of intersection of li...

    Text Solution

    |