Home
Class 12
MATHS
Let P(6, 3) be a point on the hyperbola ...

Let `P(6, 3)` be a point on the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1.` If the normal at point P intersects the x-axis at (9, 0), then find the eccentricity of the hyperbola.

A

`sqrt((5)/(2))`

B

`sqrt((3)/(2))`

C

`sqrt(2)`

D

`sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 10 : Subjective Type Questions|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1 If the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

Let P(6,3) be a point on the hyperbola x^2/a^2-y^2/b^2=1 If the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

The number of normals to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 from an external point, is

If the chords of contact of tangents from two points (-4,2) and (2,1) to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 are at right angle, then find then find the eccentricity of the hyperbola.

If the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 passes through the points (3sqrt2, 2) and (6, 2sqrt(3)) , then find the value of e i.e., eccentricity of the given hyperbola.

The hyperbola (y^(2))/(a^(2))-(x^(2))/(b^(2)) =1 passes through the points (0, -2) and (sqrt(3). 4) . Find the value of e i.e., the eccentricity of the given hyperbola.

Find the eccentricity of hyperbola x^(2)-9y^(2)=1 .

Find the eccentricity of the hyperbola 9y^(2)-4x^(2)=36

The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 passes through the point (0,-b) and the normal at P passes through the point (2asqrt(2),0) . Then the eccentricity of the hyperbola is

The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1 . If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is