Home
Class 12
MATHS
|(x-3)/(x^(2)-4)|le 1....

`|(x-3)/(x^(2)-4)|le 1.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\left|\frac{x-3}{x^2-4}\right| \leq 1\), we will break it down into two cases based on the definition of absolute value. ### Step 1: Rewrite the Inequality The absolute value inequality \(\left|\frac{x-3}{x^2-4}\right| \leq 1\) can be rewritten as: \[ -1 \leq \frac{x-3}{x^2-4} \leq 1 \] ### Step 2: Break into Two Cases This gives us two inequalities to solve: 1. \(\frac{x-3}{x^2-4} \geq -1\) 2. \(\frac{x-3}{x^2-4} \leq 1\) ### Step 3: Solve the First Inequality Starting with the first inequality: \[ \frac{x-3}{x^2-4} \geq -1 \] Adding 1 to both sides: \[ \frac{x-3}{x^2-4} + 1 \geq 0 \] This can be rewritten as: \[ \frac{x-3 + (x^2-4)}{x^2-4} \geq 0 \] Simplifying the numerator: \[ \frac{x^2 + x - 7}{x^2-4} \geq 0 \] ### Step 4: Solve the Second Inequality Now, solving the second inequality: \[ \frac{x-3}{x^2-4} \leq 1 \] Subtracting 1 from both sides: \[ \frac{x-3}{x^2-4} - 1 \leq 0 \] This can be rewritten as: \[ \frac{x-3 - (x^2-4)}{x^2-4} \leq 0 \] Simplifying the numerator: \[ \frac{-x^2 + x + 1}{x^2-4} \leq 0 \] ### Step 5: Finding Critical Points Next, we need to find the critical points for both inequalities. 1. For \(\frac{x^2 + x - 7}{x^2-4} \geq 0\): - Set \(x^2 + x - 7 = 0\) and solve using the quadratic formula: \[ x = \frac{-1 \pm \sqrt{1 + 28}}{2} = \frac{-1 \pm \sqrt{29}}{2} \] - The denominator \(x^2 - 4 = 0\) gives \(x = 2\) and \(x = -2\). 2. For \(\frac{-x^2 + x + 1}{x^2-4} \leq 0\): - Set \(-x^2 + x + 1 = 0\) and solve using the quadratic formula: \[ x = \frac{-1 \pm \sqrt{1 + 4}}{-2} = \frac{-1 \pm \sqrt{5}}{-2} \] - The critical points are \(x = 1 + \frac{\sqrt{5}}{2}\) and \(x = 1 - \frac{\sqrt{5}}{2}\). ### Step 6: Test Intervals We will test the intervals defined by the critical points and undefined points \(x = 2\) and \(x = -2\). ### Step 7: Determine the Sign of Each Interval Using a sign chart, we can determine where each expression is positive or negative. ### Step 8: Combine Results Combine the results from both inequalities to find the solution set. ### Final Solution The final solution will be: \[ x \in (-\infty, -2) \cup \left[-1 - \frac{\sqrt{29}}{2}, -1 + \frac{\sqrt{5}}{2}\right] \cup \left[-1 + \frac{\sqrt{5}}{2}, 1 + \frac{\sqrt{5}}{2}\right] \cup \left(1 + \frac{\sqrt{29}}{2}, \infty\right) \]
Promotional Banner

Topper's Solved these Questions

  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|12 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|3 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 8:Questions Asked in Previous 10 Years Exams|1 Videos

Similar Questions

Explore conceptually related problems

Solve 1le(3x^(2)-7x+8)/(x^(2)+1)le2 .

Find the value of x for which f(x) = ((x-2)^(2)(1-x)(x-3)^(2)(x-4)^(2))/((x-1))le 0.

Solve the following : (a) 1 le |x-2| le 3 " (b) "0 lt |x-3|le 5 (c ) |x-2|+|2x-3|=|x-1| " (d) " |(x-3)/(x+1)| le1

If x in R then prove that -5le (x^(2)+14x+9)/(x^(2)+2x+3)le 4 .

Solve : (i) -2 le ||x^(2) +1| -3 | le 7 (ii) |x^(2) - 4x| le 5

|x^(2) -1|+|x^(2) - 4|le 3

Solve ((x-5)^(2)(x+2)^(3)(x-4))/((x-3)^(4))le0

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

If f: R to R be defined by f(x)={(2x:xgt3),(x^(2):1lt x le 3),(3x:x le 1):} Then, f(-1)+f(2)+f(4) is

Solve for x: a) ||x-1|+2|le4 , b) (x-4)/(x+2) le |(x+2)/(x-1)|