Home
Class 12
MATHS
Find the set of all real 'a' such that 5...

Find the set of all real 'a' such that `5a^(2)-3a-2,a^(2)+a-2` and `2a^(2)+a-1` are the lenghts of the sides of a triangle?

Text Solution

AI Generated Solution

The correct Answer is:
To find the set of all real 'a' such that \(5a^2 - 3a - 2\), \(a^2 + a - 2\), and \(2a^2 + a - 1\) are the lengths of the sides of a triangle, we need to apply the triangle inequality conditions. The triangle inequality states that for any triangle with sides \(x\), \(y\), and \(z\): 1. \(x + y > z\) 2. \(y + z > x\) 3. \(z + x > y\) Let's denote: - \(x = 5a^2 - 3a - 2\) - \(y = a^2 + a - 2\) - \(z = 2a^2 + a - 1\) We will check each triangle inequality condition step by step. ### Step 1: Check \(x + y > z\) \[ (5a^2 - 3a - 2) + (a^2 + a - 2) > (2a^2 + a - 1) \] Combine like terms: \[ 5a^2 + a^2 - 2a - 4 > 2a^2 + a - 1 \] This simplifies to: \[ 6a^2 - 2a - 4 > 2a^2 + a - 1 \] Subtract \(2a^2 + a - 1\) from both sides: \[ 6a^2 - 2a - 4 - 2a^2 - a + 1 > 0 \] This simplifies to: \[ 4a^2 - 3a - 3 > 0 \] ### Step 2: Solve the quadratic inequality \(4a^2 - 3a - 3 > 0\) Using the quadratic formula \(a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ a = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 4 \cdot (-3)}}{2 \cdot 4} \] Calculating the discriminant: \[ = \frac{3 \pm \sqrt{9 + 48}}{8} = \frac{3 \pm \sqrt{57}}{8} \] The roots are: \[ a_1 = \frac{3 + \sqrt{57}}{8}, \quad a_2 = \frac{3 - \sqrt{57}}{8} \] The inequality \(4a^2 - 3a - 3 > 0\) holds for: \[ a < \frac{3 - \sqrt{57}}{8} \quad \text{or} \quad a > \frac{3 + \sqrt{57}}{8} \] ### Step 3: Check \(y + z > x\) \[ (a^2 + a - 2) + (2a^2 + a - 1) > (5a^2 - 3a - 2) \] Combine like terms: \[ 3a^2 + 2a - 3 > 5a^2 - 3a - 2 \] This simplifies to: \[ 3a^2 + 2a - 3 - 5a^2 + 3a + 2 > 0 \] This simplifies to: \[ -2a^2 + 5a - 1 > 0 \] ### Step 4: Solve the quadratic inequality \(-2a^2 + 5a - 1 > 0\) Using the quadratic formula: \[ a = \frac{-5 \pm \sqrt{5^2 - 4 \cdot (-2) \cdot (-1)}}{2 \cdot (-2)} \] Calculating the discriminant: \[ = \frac{-5 \pm \sqrt{25 - 8}}{-4} = \frac{-5 \pm \sqrt{17}}{-4} \] The roots are: \[ a_1 = \frac{5 + \sqrt{17}}{4}, \quad a_2 = \frac{5 - \sqrt{17}}{4} \] The inequality \(-2a^2 + 5a - 1 > 0\) holds for: \[ \frac{5 - \sqrt{17}}{4} < a < \frac{5 + \sqrt{17}}{4} \] ### Step 5: Check \(z + x > y\) \[ (2a^2 + a - 1) + (5a^2 - 3a - 2) > (a^2 + a - 2) \] Combine like terms: \[ 7a^2 - 2a - 3 > a^2 + a - 2 \] This simplifies to: \[ 7a^2 - 2a - 3 - a^2 - a + 2 > 0 \] This simplifies to: \[ 6a^2 - 3a - 1 > 0 \] ### Step 6: Solve the quadratic inequality \(6a^2 - 3a - 1 > 0\) Using the quadratic formula: \[ a = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 6 \cdot (-1)}}{2 \cdot 6} \] Calculating the discriminant: \[ = \frac{3 \pm \sqrt{9 + 24}}{12} = \frac{3 \pm \sqrt{33}}{12} \] The roots are: \[ a_1 = \frac{3 + \sqrt{33}}{12}, \quad a_2 = \frac{3 - \sqrt{33}}{12} \] The inequality \(6a^2 - 3a - 1 > 0\) holds for: \[ a < \frac{3 - \sqrt{33}}{12} \quad \text{or} \quad a > \frac{3 + \sqrt{33}}{12} \] ### Step 7: Combine the results Now we need to find the intersection of the intervals obtained from all three inequalities: 1. From \(4a^2 - 3a - 3 > 0\): \(a < \frac{3 - \sqrt{57}}{8}\) or \(a > \frac{3 + \sqrt{57}}{8}\) 2. From \(-2a^2 + 5a - 1 > 0\): \(\frac{5 - \sqrt{17}}{4} < a < \frac{5 + \sqrt{17}}{4}\) 3. From \(6a^2 - 3a - 1 > 0\): \(a < \frac{3 - \sqrt{33}}{12}\) or \(a > \frac{3 + \sqrt{33}}{12}\) ### Final Result The final set of values for \(a\) will be the intersection of these intervals.
Promotional Banner

Topper's Solved these Questions

  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|3 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|3 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 8:Questions Asked in Previous 10 Years Exams|1 Videos

Similar Questions

Explore conceptually related problems

The set of all real numbers a such that a^2+2a ,2a+3,a n da^2+3a+8 are the sides of a triangle is_____

The mid-points of the sides of a triangle are (2,1),(-5,7) and (-5,-5)dot Find the equations of the sides of the triangle.

The points (2, -1), (-1, 4) and (-2, 2) are mid-points of the sides of a triangle. Find its vertices.

Find the set of all s for which (2x)/(2x^(2)+5x+2) gt (1)/(x+10

Find the set of all solutions of the equation 2^|y| -|2^(y -1) -1| = 2^(y -1) +1

Find the complete set of values of a such that (x^2-x)/(1-a x) attains all real values.

Find the complete set of values of a such that (x^2-x)//(1-a x) attains all real values.

Find the complete set of values of a such that (x^2-x)/(1-a x) attains all real values.

The perimeter of a triangle is 8+13a+7a^(2) and two of its sides are 2a^(2)+3a+2 and 3a^(2)-4a-1 . Find the third side of the triangle.

The mid point of the sides of a triangle are (2,3,4),(1,5,-1) and (0,4,-2) . Find the coordinates of the centroid of the triangle.