Home
Class 12
MATHS
Solve |(x-1)/(3+2x-8x^(2))|+|1-x|=(x-1)^...

Solve `|(x-1)/(3+2x-8x^(2))|+|1-x|=(x-1)^(2)/(|3+2x-8x^(2)|) +1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \left|\frac{x-1}{3 + 2x - 8x^2}\right| + |1-x| = \frac{(x-1)^2}{|3 + 2x - 8x^2|} + 1, \] we will break it down step by step. ### Step 1: Rewrite the Equation Let: - \( a = \frac{x-1}{3 + 2x - 8x^2} \) - \( b = x - 1 \) The equation then becomes: \[ |a| + |1 - b| = \frac{b^2}{|3 + 2x - 8x^2|} + 1. \] ### Step 2: Analyze the Absolute Values We know that: \[ |1 - b| = |1 - (x - 1)| = |2 - x|. \] Thus, the equation can be rewritten as: \[ |a| + |2 - x| = \frac{b^2}{|3 + 2x - 8x^2|} + 1. \] ### Step 3: Set Up Cases for Absolute Values We need to consider different cases based on the values of \( a \) and \( b \). 1. **Case 1**: \( a \geq 0 \) and \( b \geq 0 \) 2. **Case 2**: \( a \geq 0 \) and \( b < 0 \) 3. **Case 3**: \( a < 0 \) and \( b \geq 0 \) 4. **Case 4**: \( a < 0 \) and \( b < 0 \) ### Step 4: Solve Each Case #### Case 1: \( a \geq 0 \) and \( b \geq 0 \) This gives us: \[ a + (2 - x) = \frac{b^2}{a} + 1. \] Substituting \( a \) and \( b \): \[ \frac{x-1}{3 + 2x - 8x^2} + (2 - x) = \frac{(x-1)^2}{\left|3 + 2x - 8x^2\right|} + 1. \] #### Case 2: \( a \geq 0 \) and \( b < 0 \) This gives us: \[ a + (x - 2) = \frac{b^2}{a} + 1. \] #### Case 3: \( a < 0 \) and \( b \geq 0 \) This gives us: \[ -a + (2 - x) = \frac{b^2}{-a} + 1. \] #### Case 4: \( a < 0 \) and \( b < 0 \) This gives us: \[ -a + (x - 2) = \frac{b^2}{-a} + 1. \] ### Step 5: Solve the Quadratic Equations After simplifying the equations from each case, we will end up with quadratic equations. For example: 1. From Case 1, we might derive: \[ 8x^2 - x - 4 = 0. \] 2. From Case 2, we might derive: \[ 8x^2 - 3x - 2 = 0. \] ### Step 6: Use the Quadratic Formula For the equations derived, we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \] For example, for \( 8x^2 - x - 4 = 0 \): - \( a = 8, b = -1, c = -4 \) - Discriminant: \( (-1)^2 - 4 \cdot 8 \cdot (-4) = 1 + 128 = 129 \) - Solutions: \[ x = \frac{1 \pm \sqrt{129}}{16}. \] ### Step 7: Collect All Solutions From all cases, we will find the values of \( x \): 1. From Case 1: \( x = \frac{1 \pm \sqrt{129}}{16} \) 2. From Case 2: \( x = \frac{3 \pm \sqrt{73}}{16} \) 3. From Case 3 and Case 4 will yield additional values. ### Final Step: Verify Solutions We need to check each solution against the original equation to ensure they satisfy it.
Promotional Banner

Topper's Solved these Questions

  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|3 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|3 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 8:Questions Asked in Previous 10 Years Exams|1 Videos

Similar Questions

Explore conceptually related problems

Solve (x+1)/(2x+3)=3/8

Solve (x^(3))/((2x-1)(x-1)^(2))

Solve : x-(x-1)/(2)=1-(x-2)/(3)

Solve (2x-3)/(x-1)+1=(9x-x^2-6)/(x-1)dot

Solve (2x-3)/(x-1)+1=(6x-x^2-6)/(x-1)dot

Solve: 3/4(7x-1)-(2x-(1-x)/2)=x+3/2

Solve : (1)/(x^(2) +x) le(1)/(2x^(2) + 2x+3)

Find which of the following equations are quadratic : (i) (3x-1)^(2)=5(x+8) (ii) 5x^(2)-8x=-3(7-2x) (iii) (x-4)(3x+1)=(3x-1)(x+2) (iv) x^(2)+5x-5=(x-3)^(2) (v) 7x^(3)-2x^(2)+10=(2x-5)^(2) (vi) (x-1)^(2)+(x+2)^(2)+3(x+1)=0

Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3

Solve (2)/(x^2-x+1)-(1)/(x+1)-(2x-1)/(x^3+1) ge 0.