Home
Class 12
MATHS
Consider f, g and h be three real valued...

Consider f, g and h be three real valued function defined on R. Let `f(x)=sin3x+cosx,g(x)=cos3x+sinx` and `h(x)=f^(2)(x)+g^(2)(x).` Then,
Number of point (s) where the graphs of the two function, y=f(x) and y=g(x) intersects in `[0,pi]`, is

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of points where the graphs of the functions \( f(x) = \sin(3x) + \cos(x) \) and \( g(x) = \cos(3x) + \sin(x) \) intersect in the interval \([0, \pi]\). This means we need to solve the equation \( f(x) = g(x) \). ### Step 1: Set the functions equal to each other We start by setting the two functions equal to each other: \[ \sin(3x) + \cos(x) = \cos(3x) + \sin(x) \] ### Step 2: Rearrange the equation Rearranging the equation gives us: \[ \sin(3x) - \sin(x) = \cos(3x) - \cos(x) \] ### Step 3: Use trigonometric identities We can use the sine and cosine subtraction formulas: \[ \sin(a) - \sin(b) = 2 \cos\left(\frac{a+b}{2}\right) \sin\left(\frac{a-b}{2}\right) \] \[ \cos(a) - \cos(b) = -2 \sin\left(\frac{a+b}{2}\right) \sin\left(\frac{a-b}{2}\right) \] Applying these identities, we have: \[ 2 \cos\left(2x + \frac{x}{2}\right) \sin\left(2x - \frac{x}{2}\right) = -2 \sin\left(2x + \frac{x}{2}\right) \sin\left(2x - \frac{x}{2}\right) \] ### Step 4: Factor out common terms Factoring out \( 2 \sin\left(2x - \frac{x}{2}\right) \) gives: \[ \sin\left(2x - \frac{x}{2}\right) \left( \cos\left(2x + \frac{x}{2}\right) + \sin\left(2x + \frac{x}{2}\right) \right) = 0 \] ### Step 5: Solve for the first factor The first factor \( \sin\left(2x - \frac{x}{2}\right) = 0 \) gives: \[ 2x - \frac{x}{2} = n\pi \quad \Rightarrow \quad \frac{3x}{2} = n\pi \quad \Rightarrow \quad x = \frac{2n\pi}{3} \] For \( n = 0, 1, 2 \): - \( n = 0 \): \( x = 0 \) - \( n = 1 \): \( x = \frac{2\pi}{3} \) - \( n = 2 \): \( x = \frac{4\pi}{3} \) (not in \([0, \pi]\)) ### Step 6: Solve for the second factor The second factor \( \cos\left(2x + \frac{x}{2}\right) + \sin\left(2x + \frac{x}{2}\right) = 0 \) gives: \[ \tan\left(2x + \frac{x}{2}\right) = -1 \] This implies: \[ 2x + \frac{x}{2} = \frac{3\pi}{4} + n\pi \] Solving for \( x \): \[ \frac{5x}{2} = \frac{3\pi}{4} + n\pi \quad \Rightarrow \quad x = \frac{6\pi + 8n\pi}{20} = \frac{3 + 4n}{5}\pi \] For \( n = 0, 1 \): - \( n = 0 \): \( x = \frac{3\pi}{5} \) - \( n = 1 \): \( x = \frac{7\pi}{5} \) (not in \([0, \pi]\)) ### Step 7: Count the solutions The solutions we found in the interval \([0, \pi]\) are: 1. \( x = 0 \) 2. \( x = \frac{2\pi}{3} \) 3. \( x = \frac{3\pi}{5} \) Thus, the total number of intersection points is **4**.
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|11 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise MAXIMA AND MINIMA EXERCISE 6|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|8 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). h(x) = 4

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function g=h(x) is increasing, is

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function h(x) is increasing, is

Consider f, g and h be three real valued function defined on R. Let f(x)= sin 3x + cos x , g(x)= cos 3x + sin x and h(x) = f^(2)(x) + g^(2)(x) Q. General solution of the equation h(x) = 4 , is : [where n in I ]

Consider f, g and h be three real valued function defined on R. Let f(x)= sin 3x + cos x , g(x)= cos 3x + sin x and h(x) = f^(2)(x) + g^(2)(x) Q. General solution of the equation h(x) = 4 , is : [where n in I ]

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

Consider f,g and h be three real valued differentiable functions defined on R. Let g(x)=x^(3)+g''(1)x^(3)+(3g'(1)-g''(1)-1)x+3g'(1) f(x)=xg(x)-12x+1 and f(x)=(h(x))^(2), where g(0)=1 The function y=f(x) has

Suppose f, g and h be three real valued function defined on R Let f(x) =2x+|x| g(x) =1/3(2x-|x|) h(x) =f(g(x)) The range of the function k(x) = 1 + 1/pi(cos^(-1)h(x) + cot^(-1)(h(x))) is equal to

Let f and g be two real values functions defined by f(x)= x + 1 and g(x) = 2x-3 . Find 1) f+g , 2) f-g , 3) f/g

Consider f,g and h be three real valued differentiable functions defined on R. Let g(x)=x^(3)+g''(1)x^(2)+(3g'(1)-g''(1)-1)x+3g'(1) f(x)=xg(x)-12x+1 and f(x)=(h(x))^(2), where g(0)=1 Which one of the following does not hold good for y=h(x)

ARIHANT MATHS ENGLISH-MONOTONICITY MAXIMA AND MINIMA-Exercise (Passage Based Questions)
  1. f: D->R, f(x) = (x^2 +bx+c)/(x^2+b1 x+c1) wherealpha,beta are the root...

    Text Solution

    |

  2. f: D->R, f(x) = (x^2 +bx+c)/(x^2+b1 x+c1) wherealpha,beta are the root...

    Text Solution

    |

  3. f: D->R, f(x) = (x^2 +bx+c)/(x^2+b1 x+c1) wherealpha,beta are the root...

    Text Solution

    |

  4. f: D->R, f(x) = (x^2 +bx+c)/(x^2+b1 x+c1) wherealpha,beta are the root...

    Text Solution

    |

  5. f: D->R, f(x) = (x^2 +bx+c)/(x^2+b1 x+c1) wherealpha,beta are the root...

    Text Solution

    |

  6. consider the function f(x)=(x^(2))/(x^(2)-1) The interval in which f...

    Text Solution

    |

  7. consider the function f(x)=(x^(2))/(x^(2)-1) If f is defined from R-...

    Text Solution

    |

  8. consider the function f(x)=(x^(2))/(x^(2)-1) f has

    Text Solution

    |

  9. Let f(x)=e^((P+1)x)-e^(x) for real number Pgt0, then The value of x=...

    Text Solution

    |

  10. Let f(x)=e^((P+1)x)-e^(x) for real number Pgt0, then Use the fact t...

    Text Solution

    |

  11. Let f(x)=e^((P+1)x)-e^(x) for real number Pgt0, then Let g(t)=int(t)...

    Text Solution

    |

  12. Consider f, g and h be three real valued function defined on R. Let f(...

    Text Solution

    |

  13. Consider f, g and h be three real valued function defined on R. Let ...

    Text Solution

    |

  14. Consider f, g and h be three real valued function defined on R. Let f(...

    Text Solution

    |

  15. Consider f,g and h be three real valued functions defined on R. Let f(...

    Text Solution

    |

  16. Consider f,g and h be three real valued functions defined on R. Let f(...

    Text Solution

    |

  17. Consider f,g and h be three real valued functions defined on R. Let f(...

    Text Solution

    |

  18. Consider f,g and h be three real valued differentiable functions defin...

    Text Solution

    |

  19. Find the intervals in which f(x)=(x-1)^3(x-2)^2 is increasing or decre...

    Text Solution

    |

  20. Consider f,g and h be three real valued differentiable functions defin...

    Text Solution

    |