Home
Class 12
MATHS
Let f,g and h be real-valued functions d...

Let `f,g` and `h` be real-valued functions defined on the interval `[0,1]` by `f(x)=e^(x^2)+e^(-x^2)` , `g(x)=x e^(x^2)+e^(-x^2)` and `h(x)=x^2 e^(x^2)+e^(-x^2)`. if `a,b` and `c` denote respectively, the absolute maximum of `f,g` and `h` on `[0,1]` then

A

`a=bandcneb`

B

`a=c and a ne b`

C

`a ne b c ne b`

D

`a=b=c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the absolute maximum values of the functions \( f(x) \), \( g(x) \), and \( h(x) \) on the interval \([0, 1]\) and determine the relationship between these maximum values. ### Step 1: Define the Functions The functions are given as: - \( f(x) = e^{x^2} + e^{-x^2} \) - \( g(x) = x e^{x^2} + e^{-x^2} \) - \( h(x) = x^2 e^{x^2} + e^{-x^2} \) ### Step 2: Evaluate the Functions at the Endpoints We will first evaluate each function at the endpoints \( x = 0 \) and \( x = 1 \). 1. **For \( f(x) \)**: - \( f(0) = e^{0^2} + e^{-0^2} = 1 + 1 = 2 \) - \( f(1) = e^{1^2} + e^{-1^2} = e + \frac{1}{e} \) 2. **For \( g(x) \)**: - \( g(0) = 0 \cdot e^{0^2} + e^{-0^2} = 0 + 1 = 1 \) - \( g(1) = 1 \cdot e^{1^2} + e^{-1^2} = e + \frac{1}{e} \) 3. **For \( h(x) \)**: - \( h(0) = 0^2 \cdot e^{0^2} + e^{-0^2} = 0 + 1 = 1 \) - \( h(1) = 1^2 \cdot e^{1^2} + e^{-1^2} = e + \frac{1}{e} \) ### Step 3: Compare the Values Now we compare the values we calculated: - \( f(0) = 2 \), \( f(1) = e + \frac{1}{e} \) - \( g(0) = 1 \), \( g(1) = e + \frac{1}{e} \) - \( h(0) = 1 \), \( h(1) = e + \frac{1}{e} \) ### Step 4: Determine the Maximum Values From the evaluations: - At \( x = 0 \), \( f(0) = 2 \) is the maximum. - At \( x = 1 \), \( g(1) = e + \frac{1}{e} \) and \( h(1) = e + \frac{1}{e} \) are equal. ### Step 5: Conclusion Thus, we have: - \( a = f(1) = e + \frac{1}{e} \) - \( b = g(1) = e + \frac{1}{e} \) - \( c = h(1) = e + \frac{1}{e} \) This implies: - \( a = b = c \) ### Final Answer The correct relationship is: - \( a = b = c \)
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise MAXIMA AND MINIMA EXERCISE 6|2 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

Let be a real valued function defined by f(x) =e +e^x , then the range of f(x) is :

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

Let f(x) be real valued continuous function on R defined as f(x)=x^(2)e^(-|x|) then f(x) is increasing in

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

If f(x)=e^(x) and g(x)=(x)/(2) , then g(f(2))=

Let f be a real valued function defined by f(x)=(e^x-e^(-|x|))/(e^x+e^(|x|)) , then the range of f(x) is: (a)R (b) [0,1] (c) [0,1) (d) [0,1/2)

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

ARIHANT MATHS ENGLISH-MONOTONICITY MAXIMA AND MINIMA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. A rectangular sheet of fixed perimeter with sides having their lengths...

    Text Solution

    |

  2. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |

  3. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  4. e total number of local maxima and local minima of the function f(x) =...

    Text Solution

    |

  5. If the function g:(-oo,oo)->(-pi/2,pi/2) is given by g(u)=2tan^-1(e^u)...

    Text Solution

    |

  6. The second degree polynomial f(x), satisfying f(0)=o, f(1)=1,f'(x)gt...

    Text Solution

    |

  7. If f(x)=x^3+bx^2+cx+d and 0<b^2<c, then

    Text Solution

    |

  8. If f(x)=x^2+2b x+2c^2 and g(x)= -x^2-2c x+b^2 are such that min f(x...

    Text Solution

    |

  9. The length of the longest interval in which the function 3sinx-4sin^3x...

    Text Solution

    |

  10. If f(x)=e^(1-x) then f(x) is

    Text Solution

    |

  11. The maximum value of (cosalpha(1))(cos alpha(2))...(cosalpha(n)), un...

    Text Solution

    |

  12. If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt ...

    Text Solution

    |

  13. If f(x) is a cubic polynomil which as local maximum at x=-1 . If f(2)=...

    Text Solution

    |

  14. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Find a point on the curve x^2 + 2y^2 = 6, whose distance from the li...

    Text Solution

    |

  17. Let I RvecI R be defined as f(x)=|x|++x^2-1|dot The total number of po...

    Text Solution

    |

  18. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  19. Let f be a function defined on R (the set of all real numbers) such th...

    Text Solution

    |

  20. The maximum value of the expression (1)/(sin ^(2) theta + 3 sin thet...

    Text Solution

    |