Home
Class 12
MATHS
If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,,...

If `f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):}`
` x in [ 1, 3 ] `, then

A

g(x) has local maxima at `x=1+log_(e)2` and local minima at x=e

B

f(x) has local maxima at x=1 and local minima at x=2

C

g(x) has no local minima

D

f(x) has no local maxima

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the piecewise function \( f(x) \) and its integral \( g(x) \) over the interval \( [1, 3] \). We will find the local maxima and minima of \( g(x) \). ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined as follows: - For \( 0 \leq x < 1 \): \( f(x) = e^x \) - For \( 1 < x \leq 2 \): \( f(x) = 2 - e^{x-1} \) - For \( 2 < x \leq 3 \): \( f(x) = x - e \) ### Step 2: Define the integral \( g(x) \) The function \( g(x) \) is defined as: \[ g(x) = \int_0^x f(t) \, dt \] We need to evaluate \( g(x) \) for \( x \) in the interval \( [1, 3] \). ### Step 3: Find \( g(x) \) for \( x \) in different intervals 1. **For \( 1 < x \leq 2 \)**: \[ g(x) = \int_0^1 f(t) \, dt + \int_1^x f(t) \, dt \] - Calculate \( \int_0^1 e^t \, dt = [e^t]_0^1 = e - 1 \) - Calculate \( \int_1^x (2 - e^{t-1}) \, dt \): \[ = \int_1^x 2 \, dt - \int_1^x e^{t-1} \, dt = 2(x - 1) - [e^{t-1}]_1^x = 2(x - 1) - (e^{x-1} - 1) \] - Thus, \[ g(x) = (e - 1) + 2(x - 1) - (e^{x-1} - 1) = e - 1 + 2x - 2 - e^{x-1} + 1 = e + 2x - 2 - e^{x-1} \] 2. **For \( 2 < x \leq 3 \)**: \[ g(x) = \int_0^1 e^t \, dt + \int_1^2 (2 - e^{t-1}) \, dt + \int_2^x (t - e) \, dt \] - We already calculated the first two integrals: \[ g(2) = e - 1 + (2 - e) = e + 1 \] - Now calculate \( \int_2^x (t - e) \, dt \): \[ = \left[\frac{t^2}{2} - et\right]_2^x = \left(\frac{x^2}{2} - ex\right) - \left(\frac{4}{2} - 2e\right) = \frac{x^2}{2} - ex - 2 + 2e \] - Thus, \[ g(x) = (e + 1) + \left(\frac{x^2}{2} - ex - 2 + 2e\right) = \frac{x^2}{2} - ex + e - 1 \] ### Step 4: Find \( g'(x) \) To find local maxima and minima, we differentiate \( g(x) \): 1. For \( 1 < x \leq 2 \): \[ g'(x) = 2 - e^{x-1} \] 2. For \( 2 < x \leq 3 \): \[ g'(x) = x - e \] ### Step 5: Set \( g'(x) = 0 \) to find critical points 1. **For \( 1 < x \leq 2 \)**: \[ 2 - e^{x-1} = 0 \implies e^{x-1} = 2 \implies x - 1 = \ln(2) \implies x = 1 + \ln(2) \] 2. **For \( 2 < x \leq 3 \)**: \[ x - e = 0 \implies x = e \] ### Step 6: Determine the nature of critical points - For \( x = 1 + \ln(2) \): - Test values around \( 1 + \ln(2) \) to see if \( g'(x) \) changes from positive to negative (local maximum). - For \( x = e \): - Test values around \( e \) to see if \( g'(x) \) changes from negative to positive (local minimum). ### Conclusion - Local maximum at \( x = 1 + \ln(2) \) - Local minimum at \( x = e \)
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise MAXIMA AND MINIMA EXERCISE 6|2 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

Let f (x) = [{:(1-x,,, 0 le x le 1),(0,,, 1 lt x le 2 and g (x) = int_(0)^(x) f (t)dt.),( (2-x)^(2),,, 2 lt x le 3):} Let the tangent to the curve y = g( x) at point P whose abscissa is 5/2 cuts x-axis in point Q. Let the prependicular from point Q on x-axis meets the curve y =g (x) in point R .Find equation of tangent at to y=g(x) at P .Also the value of g (1) =

f(x)={:{(1-x","" "0 le c le 1),(0","" "1 le x le 2" and "phi (x)=int_(0)^(x)f(t)" dt"."Then"),((2-x)^(2)","" "2 le x le 3):} for any x in [2,3],phi(x) equals

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

f(x)={{:(x-1",", -1 le xle 0),(x^(2)",",0 lt x le 1):} and g(x)=sinx. Find h(x)=f(abs(g(x)))+abs(f(g(x))).

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

ARIHANT MATHS ENGLISH-MONOTONICITY MAXIMA AND MINIMA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If the function g:(-oo,oo)->(-pi/2,pi/2) is given by g(u)=2tan^-1(e^u)...

    Text Solution

    |

  2. The second degree polynomial f(x), satisfying f(0)=o, f(1)=1,f'(x)gt...

    Text Solution

    |

  3. If f(x)=x^3+bx^2+cx+d and 0<b^2<c, then

    Text Solution

    |

  4. If f(x)=x^2+2b x+2c^2 and g(x)= -x^2-2c x+b^2 are such that min f(x...

    Text Solution

    |

  5. The length of the longest interval in which the function 3sinx-4sin^3x...

    Text Solution

    |

  6. If f(x)=e^(1-x) then f(x) is

    Text Solution

    |

  7. The maximum value of (cosalpha(1))(cos alpha(2))...(cosalpha(n)), un...

    Text Solution

    |

  8. If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt ...

    Text Solution

    |

  9. If f(x) is a cubic polynomil which as local maximum at x=-1 . If f(2)=...

    Text Solution

    |

  10. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. Find a point on the curve x^2 + 2y^2 = 6, whose distance from the li...

    Text Solution

    |

  13. Let I RvecI R be defined as f(x)=|x|++x^2-1|dot The total number of po...

    Text Solution

    |

  14. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  15. Let f be a function defined on R (the set of all real numbers) such th...

    Text Solution

    |

  16. The maximum value of the expression (1)/(sin ^(2) theta + 3 sin thet...

    Text Solution

    |

  17. The maximum value of the function f(x)=2x^3-15 x^2+36 x-48 on the set ...

    Text Solution

    |

  18. A wire of length 2 units is cut into two parts which are bent respecti...

    Text Solution

    |

  19. If x =-1 and x=2 ar extreme points of f(x) =alpha log|x|+betax^(2)+x ,...

    Text Solution

    |

  20. Let a , b in R be such that the function f given byf(X) = ln |x|+bx^(2...

    Text Solution

    |